Mapeamento digital de classes de solos : densidade de amostragem, seleção de variáveis e extrapolação para áreas fisiograficamente semelhantes

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Bagatini, Tatiane
Orientador(a): Giasson, Elvio
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/10183/139068
Resumo: Nas últimas décadas o Mapeamento Digital de Solos (MDS) está ganhando espaço devido ao aumento da disponibilidade de dados numéricos, entretanto algumas metodologias ainda precisam ser definidas, dentre elas, a densidade de amostras e as variáveis a serem utilizadas para a alimentação dos modelos. Assim, o objetivo deste trabalho foi testar diferentes densidades de amostragem, diferentes conjuntos de variáveis para avaliar a resposta dos modelos e, a partir disso, realizar a extrapolação de classes de solos em paisagens semelhantes. Esta tese é composta de três estudos que testam metodologias para a predição de ocorrência de classes de solos utilizando técnicas do MDS. No primeiro estudo, realizado nas bacias do Santo Cristo e do Lageado Grande foi testado o efeito de diferentes densidades de amostragens sobre a capacidade preditiva dos modelos de predição de ocorrência de classes de solos. Os modelos preditores foram treinados com dados dos atributos do terreno derivados do modelo digital de elevação e com informações de solos extraídas do mapa pedológico. De modo geral o aumento da densidade de amostragem resultou no aumento da concordância com os mapas de referências e no aumento do número de unidades de mapeamento preditas. No segundo estudo, realizado nas bacias do Santo Cristo e do Arroio Portão, foi testado o efeito de diferentes conjuntos de variáveis geomorfométricas sobre a capacidade preditiva dos modelos de predição de ocorrência de classes de solos. A partir do modelo digital de elevação foram geradas onze variáveis. As variáveis comprimento de fluxo, elevação do terreno e distância de rios foram as que mais influenciaram os resultados de acurácia e a quantidade de unidades de mapeamento preditas. O modelo gerado com somente as três variáveis gerou o modelo com resultados semelhantes ao modelo gerado com todas as variáveis. O terceiro estudo foi realizado em duas etapas. A primeira etapa foi realizada nas bacias do Santo Cristo e do Arroio Portão e a segunda nas bacias do Santo Cristo e na do Lageado Grande. Na primeira etapa dividiu-se as bacias em partes iguais, utilizando-se uma para o treinamento e a outra para a validação dos modelos. A acurácia foi maior na área de treinamento do que na área de validação, entretanto mostrou-se uma ferramenta interessante a ser utilizada para a elaboração de mapas. Na segunda etapa utilizou-se a bacia do Santo Cristo para o treinamento do modelo e a do Lageado Grande para a validação. Nesta fase os modelos não conseguiram gerar mapas com boas acurácias na área de validação.
id URGS_ba0a52ed86b7a1fa19615665d68ddbf5
oai_identifier_str oai:www.lume.ufrgs.br:10183/139068
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str
spelling Bagatini, TatianeGiasson, Elvio2016-04-16T02:07:54Z2015http://hdl.handle.net/10183/139068000989413Nas últimas décadas o Mapeamento Digital de Solos (MDS) está ganhando espaço devido ao aumento da disponibilidade de dados numéricos, entretanto algumas metodologias ainda precisam ser definidas, dentre elas, a densidade de amostras e as variáveis a serem utilizadas para a alimentação dos modelos. Assim, o objetivo deste trabalho foi testar diferentes densidades de amostragem, diferentes conjuntos de variáveis para avaliar a resposta dos modelos e, a partir disso, realizar a extrapolação de classes de solos em paisagens semelhantes. Esta tese é composta de três estudos que testam metodologias para a predição de ocorrência de classes de solos utilizando técnicas do MDS. No primeiro estudo, realizado nas bacias do Santo Cristo e do Lageado Grande foi testado o efeito de diferentes densidades de amostragens sobre a capacidade preditiva dos modelos de predição de ocorrência de classes de solos. Os modelos preditores foram treinados com dados dos atributos do terreno derivados do modelo digital de elevação e com informações de solos extraídas do mapa pedológico. De modo geral o aumento da densidade de amostragem resultou no aumento da concordância com os mapas de referências e no aumento do número de unidades de mapeamento preditas. No segundo estudo, realizado nas bacias do Santo Cristo e do Arroio Portão, foi testado o efeito de diferentes conjuntos de variáveis geomorfométricas sobre a capacidade preditiva dos modelos de predição de ocorrência de classes de solos. A partir do modelo digital de elevação foram geradas onze variáveis. As variáveis comprimento de fluxo, elevação do terreno e distância de rios foram as que mais influenciaram os resultados de acurácia e a quantidade de unidades de mapeamento preditas. O modelo gerado com somente as três variáveis gerou o modelo com resultados semelhantes ao modelo gerado com todas as variáveis. O terceiro estudo foi realizado em duas etapas. A primeira etapa foi realizada nas bacias do Santo Cristo e do Arroio Portão e a segunda nas bacias do Santo Cristo e na do Lageado Grande. Na primeira etapa dividiu-se as bacias em partes iguais, utilizando-se uma para o treinamento e a outra para a validação dos modelos. A acurácia foi maior na área de treinamento do que na área de validação, entretanto mostrou-se uma ferramenta interessante a ser utilizada para a elaboração de mapas. Na segunda etapa utilizou-se a bacia do Santo Cristo para o treinamento do modelo e a do Lageado Grande para a validação. Nesta fase os modelos não conseguiram gerar mapas com boas acurácias na área de validação.In recent decades the digital soil mapping is gaining ground due to the increase of numerical data, but some methodologies have yet to be defined, among them, the density of sampling and the selection of attributes models training. The objective of this study was to evaluate the use of different methodologies and materials for data analysis and prediction of occurrence of soil classes. This thesis is composed of three studies testing methodologies for soil classes of occurrence of prediction using MDS techniques. In the first study, performed in the Santo Cristo and the Lageado Grande watersheds, it was tested the effect of different densities of samples on the capacity of models to predict the occurrence of soil classes. The predictive models were trained with data attributes derived from a digital terrain elevation model and information extracted from a legacy soil map. In general, the increase in sampling density resulted in an increase in accordance with the reference map and increase the number of predicted map units. In the second study, performed in the Santo Cristo and Arroio Portão watersheds, it was tested the effect of different sets of geomorphometric variables on the predictive ability of occurrence of prediction models of soil classes. From the digital elevation model were derivate eleven variables. The variables flow length, altitude and distance from rivers were the ones that more influenced the results of accuracy and number of predicted mapping units. The model generated with only this three variables generated the model with results similar to the model that used all variables. The third study was performed in two stages. The first step performed in the Santo Cristo and Arroio Portão watersheds, and the second in the Santo Cristo and Lageado Grande watersheds. In the first step the basins were divided into two equal parts using a part for model training and the other for model validation. The accuracy was greater in the training area than in the validation area; however the extrapolation to similar areas proved to be an interesting tool to be used for the preparation of maps. In the second step it was used the basin of the Santo Cristo for model training and the Lageado Grande for model validation. In this step the models were not able to generate maps with good accuracy in the validation area.application/pdfporClassificacao do soloPedologiaMapeamento digitalMapeamento digital de classes de solos : densidade de amostragem, seleção de variáveis e extrapolação para áreas fisiograficamente semelhantesDigital soil class mapping : sampling density, variable selection and extrapolation to phisiographic similar areainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisUniversidade Federal do Rio Grande do SulFaculdade de AgronomiaPrograma de Pós-Graduação em Ciência do SoloPorto Alegre, BR-RS2015doutoradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000989413.pdf000989413.pdfTexto completoapplication/pdf2602095http://www.lume.ufrgs.br/bitstream/10183/139068/1/000989413.pdf2a1f25711c3d0018275da10b1f53ece1MD51TEXT000989413.pdf.txt000989413.pdf.txtExtracted Texttext/plain173770http://www.lume.ufrgs.br/bitstream/10183/139068/2/000989413.pdf.txt64bd350881fbba55ab8d31dfe1571492MD52THUMBNAIL000989413.pdf.jpg000989413.pdf.jpgGenerated Thumbnailimage/jpeg1092http://www.lume.ufrgs.br/bitstream/10183/139068/3/000989413.pdf.jpgcd7c2b019abb484857c1672a5c8187cbMD5310183/1390682025-08-03 08:00:15.646801oai:www.lume.ufrgs.br:10183/139068Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br || lume@ufrgs.bropendoar:18532025-08-03T11:00:15Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Mapeamento digital de classes de solos : densidade de amostragem, seleção de variáveis e extrapolação para áreas fisiograficamente semelhantes
dc.title.alternative.en.fl_str_mv Digital soil class mapping : sampling density, variable selection and extrapolation to phisiographic similar area
title Mapeamento digital de classes de solos : densidade de amostragem, seleção de variáveis e extrapolação para áreas fisiograficamente semelhantes
spellingShingle Mapeamento digital de classes de solos : densidade de amostragem, seleção de variáveis e extrapolação para áreas fisiograficamente semelhantes
Bagatini, Tatiane
Classificacao do solo
Pedologia
Mapeamento digital
title_short Mapeamento digital de classes de solos : densidade de amostragem, seleção de variáveis e extrapolação para áreas fisiograficamente semelhantes
title_full Mapeamento digital de classes de solos : densidade de amostragem, seleção de variáveis e extrapolação para áreas fisiograficamente semelhantes
title_fullStr Mapeamento digital de classes de solos : densidade de amostragem, seleção de variáveis e extrapolação para áreas fisiograficamente semelhantes
title_full_unstemmed Mapeamento digital de classes de solos : densidade de amostragem, seleção de variáveis e extrapolação para áreas fisiograficamente semelhantes
title_sort Mapeamento digital de classes de solos : densidade de amostragem, seleção de variáveis e extrapolação para áreas fisiograficamente semelhantes
author Bagatini, Tatiane
author_facet Bagatini, Tatiane
author_role author
dc.contributor.author.fl_str_mv Bagatini, Tatiane
dc.contributor.advisor1.fl_str_mv Giasson, Elvio
contributor_str_mv Giasson, Elvio
dc.subject.por.fl_str_mv Classificacao do solo
Pedologia
Mapeamento digital
topic Classificacao do solo
Pedologia
Mapeamento digital
description Nas últimas décadas o Mapeamento Digital de Solos (MDS) está ganhando espaço devido ao aumento da disponibilidade de dados numéricos, entretanto algumas metodologias ainda precisam ser definidas, dentre elas, a densidade de amostras e as variáveis a serem utilizadas para a alimentação dos modelos. Assim, o objetivo deste trabalho foi testar diferentes densidades de amostragem, diferentes conjuntos de variáveis para avaliar a resposta dos modelos e, a partir disso, realizar a extrapolação de classes de solos em paisagens semelhantes. Esta tese é composta de três estudos que testam metodologias para a predição de ocorrência de classes de solos utilizando técnicas do MDS. No primeiro estudo, realizado nas bacias do Santo Cristo e do Lageado Grande foi testado o efeito de diferentes densidades de amostragens sobre a capacidade preditiva dos modelos de predição de ocorrência de classes de solos. Os modelos preditores foram treinados com dados dos atributos do terreno derivados do modelo digital de elevação e com informações de solos extraídas do mapa pedológico. De modo geral o aumento da densidade de amostragem resultou no aumento da concordância com os mapas de referências e no aumento do número de unidades de mapeamento preditas. No segundo estudo, realizado nas bacias do Santo Cristo e do Arroio Portão, foi testado o efeito de diferentes conjuntos de variáveis geomorfométricas sobre a capacidade preditiva dos modelos de predição de ocorrência de classes de solos. A partir do modelo digital de elevação foram geradas onze variáveis. As variáveis comprimento de fluxo, elevação do terreno e distância de rios foram as que mais influenciaram os resultados de acurácia e a quantidade de unidades de mapeamento preditas. O modelo gerado com somente as três variáveis gerou o modelo com resultados semelhantes ao modelo gerado com todas as variáveis. O terceiro estudo foi realizado em duas etapas. A primeira etapa foi realizada nas bacias do Santo Cristo e do Arroio Portão e a segunda nas bacias do Santo Cristo e na do Lageado Grande. Na primeira etapa dividiu-se as bacias em partes iguais, utilizando-se uma para o treinamento e a outra para a validação dos modelos. A acurácia foi maior na área de treinamento do que na área de validação, entretanto mostrou-se uma ferramenta interessante a ser utilizada para a elaboração de mapas. Na segunda etapa utilizou-se a bacia do Santo Cristo para o treinamento do modelo e a do Lageado Grande para a validação. Nesta fase os modelos não conseguiram gerar mapas com boas acurácias na área de validação.
publishDate 2015
dc.date.issued.fl_str_mv 2015
dc.date.accessioned.fl_str_mv 2016-04-16T02:07:54Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/139068
dc.identifier.nrb.pt_BR.fl_str_mv 000989413
url http://hdl.handle.net/10183/139068
identifier_str_mv 000989413
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/139068/1/000989413.pdf
http://www.lume.ufrgs.br/bitstream/10183/139068/2/000989413.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/139068/3/000989413.pdf.jpg
bitstream.checksum.fl_str_mv 2a1f25711c3d0018275da10b1f53ece1
64bd350881fbba55ab8d31dfe1571492
cd7c2b019abb484857c1672a5c8187cb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br || lume@ufrgs.br
_version_ 1846255894581477376