Equações de advecção-difusão com aplicações às equações de Navier-Stokes
| Ano de defesa: | 2008 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://hdl.handle.net/10183/13714 |
Resumo: | Este trabalho consiste de duas partes. Na primeira, estendemos o resultado de Braz e Silva e Zingano [2], [3] sobre soluções u(•; t) ε C°([0; T[;Lp(Rn)) de equações de advecção-difusão em meios heterogêneos para classes mais gerais de equações parabólicas, aplicando os resultados nas equações de Navier-Stokes incompressíveis no plano formuladas em termos da vorticidade do escoamento. Em particular, estabelecemos estimativas mostrando o decaimento em certas normas do campo de velocidade u(•; t) em caso de escoamentos de energia infinita. Na segunda parte, consideramos as equações de Navier-Stokes em dimensão n = 2; 3 examinando soluções u(•; t) de energia finita. Inicialmente, obtemos uma nova derivação, mais simples, do resultado obtido originalmente por Kato [20] estabelecendo o decaimento assintótico (t → ∞) de ||u(•; t)||L²(Rn), para estados iniciais u0 ε H¹(Rn) (com divergente nulo) arbitrários. Na linha deste argumento obtemos uma formula»c~ao mais forte dos resultados fundamentais de Wiegner [36] relacionando u(•; t) com soluções evΔtu0 da equação do calor, adaptando o método recentemente introduzido em [22], [23] para a derivação destes resultados. O método de [22], [23] também é utilizado para estabelecermos (dimensão n=3) que, ocorrendo "blow- up"de u(•; t) em tempo finito t*, necessariamente t* < 0:159||u0||4Lp(Rn)º-5, sendo ν a viscosidade dinãmica do escoamento. |
| id |
URGS_bfe9d7b2eddadb986ef4f2758cbd212d |
|---|---|
| oai_identifier_str |
oai:www.lume.ufrgs.br:10183/13714 |
| network_acronym_str |
URGS |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da UFRGS |
| repository_id_str |
|
| spelling |
Schütz, LineiaZingano, Paulo Ricardo de Avila2008-08-21T04:33:40Z2008http://hdl.handle.net/10183/13714000651196Este trabalho consiste de duas partes. Na primeira, estendemos o resultado de Braz e Silva e Zingano [2], [3] sobre soluções u(•; t) ε C°([0; T[;Lp(Rn)) de equações de advecção-difusão em meios heterogêneos para classes mais gerais de equações parabólicas, aplicando os resultados nas equações de Navier-Stokes incompressíveis no plano formuladas em termos da vorticidade do escoamento. Em particular, estabelecemos estimativas mostrando o decaimento em certas normas do campo de velocidade u(•; t) em caso de escoamentos de energia infinita. Na segunda parte, consideramos as equações de Navier-Stokes em dimensão n = 2; 3 examinando soluções u(•; t) de energia finita. Inicialmente, obtemos uma nova derivação, mais simples, do resultado obtido originalmente por Kato [20] estabelecendo o decaimento assintótico (t → ∞) de ||u(•; t)||L²(Rn), para estados iniciais u0 ε H¹(Rn) (com divergente nulo) arbitrários. Na linha deste argumento obtemos uma formula»c~ao mais forte dos resultados fundamentais de Wiegner [36] relacionando u(•; t) com soluções evΔtu0 da equação do calor, adaptando o método recentemente introduzido em [22], [23] para a derivação destes resultados. O método de [22], [23] também é utilizado para estabelecermos (dimensão n=3) que, ocorrendo "blow- up"de u(•; t) em tempo finito t*, necessariamente t* < 0:159||u0||4Lp(Rn)º-5, sendo ν a viscosidade dinãmica do escoamento.In the first part of the this work, we extend results by Braz e Silva e Zingano [2], [3] concerning Lp solutions u(•; t) ε C°([0; T[;Lp(Rn)) of advection-dicusion equations in heterogeneous media to broader classes of quasilinear parabolic equations, applying the results to incompressible Navier-Stokes flows in the plane by way of the vorticity formulation. In particular, we obtain some decay rates (as t → ∞) for certain norms of the velocity field u(•; t) in case of flow with infinity energy. In the second part, we consider the Navier-Stokes equations in dimension n = 2; 3 and examine solutions u(•; t) with finite energy. First, we give a new (and simpler) derivation of the time asymptotic result originally obtained by Kato [20] and Masuda [28] showing the decay of the L2 norm of divergence-free, finite- energy solutions. Following these footsteps, we give a stronger formulation of the fundamental results obtained by Wiegner [36] relating the velocity field u(•; t) to solutions evΔtu0 of the heat equation, adapting the approach introduced in [22], [23] for the derivation of Wiergner's results. The analysis in [22], [23] is also used to obtain an interesting bound for the blow-up time t* in 3-D flows, in case solutions cease to be smooth: one must have t* < 0:159||u0||4Lp(Rn)º-5, where v is the dynamic viscosity.application/pdfporEquações de Navier-StokesEquacões de advecção-difusãoEquações de advecção-difusão com aplicações às equações de Navier-Stokesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisUniversidade Federal do Rio Grande do SulInstituto de MatemáticaPrograma de Pós-Graduação em MatemáticaPorto Alegre, BR-RS2008doutoradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000651196.pdf000651196.pdfTexto completoapplication/pdf419034http://www.lume.ufrgs.br/bitstream/10183/13714/1/000651196.pdfd66388017204d4a535bfcf4f6996eddfMD51TEXT000651196.pdf.txt000651196.pdf.txtExtracted Texttext/plain83634http://www.lume.ufrgs.br/bitstream/10183/13714/2/000651196.pdf.txt388293b62f9fee9aade28923ad8d2369MD52THUMBNAIL000651196.pdf.jpg000651196.pdf.jpgGenerated Thumbnailimage/jpeg942http://www.lume.ufrgs.br/bitstream/10183/13714/3/000651196.pdf.jpg4f70ed25dee92ca7fd4299c0d9c6219aMD5310183/137142018-10-05 08:06:50.567oai:www.lume.ufrgs.br:10183/13714Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532018-10-05T11:06:50Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
| dc.title.pt_BR.fl_str_mv |
Equações de advecção-difusão com aplicações às equações de Navier-Stokes |
| title |
Equações de advecção-difusão com aplicações às equações de Navier-Stokes |
| spellingShingle |
Equações de advecção-difusão com aplicações às equações de Navier-Stokes Schütz, Lineia Equações de Navier-Stokes Equacões de advecção-difusão |
| title_short |
Equações de advecção-difusão com aplicações às equações de Navier-Stokes |
| title_full |
Equações de advecção-difusão com aplicações às equações de Navier-Stokes |
| title_fullStr |
Equações de advecção-difusão com aplicações às equações de Navier-Stokes |
| title_full_unstemmed |
Equações de advecção-difusão com aplicações às equações de Navier-Stokes |
| title_sort |
Equações de advecção-difusão com aplicações às equações de Navier-Stokes |
| author |
Schütz, Lineia |
| author_facet |
Schütz, Lineia |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Schütz, Lineia |
| dc.contributor.advisor1.fl_str_mv |
Zingano, Paulo Ricardo de Avila |
| contributor_str_mv |
Zingano, Paulo Ricardo de Avila |
| dc.subject.por.fl_str_mv |
Equações de Navier-Stokes Equacões de advecção-difusão |
| topic |
Equações de Navier-Stokes Equacões de advecção-difusão |
| description |
Este trabalho consiste de duas partes. Na primeira, estendemos o resultado de Braz e Silva e Zingano [2], [3] sobre soluções u(•; t) ε C°([0; T[;Lp(Rn)) de equações de advecção-difusão em meios heterogêneos para classes mais gerais de equações parabólicas, aplicando os resultados nas equações de Navier-Stokes incompressíveis no plano formuladas em termos da vorticidade do escoamento. Em particular, estabelecemos estimativas mostrando o decaimento em certas normas do campo de velocidade u(•; t) em caso de escoamentos de energia infinita. Na segunda parte, consideramos as equações de Navier-Stokes em dimensão n = 2; 3 examinando soluções u(•; t) de energia finita. Inicialmente, obtemos uma nova derivação, mais simples, do resultado obtido originalmente por Kato [20] estabelecendo o decaimento assintótico (t → ∞) de ||u(•; t)||L²(Rn), para estados iniciais u0 ε H¹(Rn) (com divergente nulo) arbitrários. Na linha deste argumento obtemos uma formula»c~ao mais forte dos resultados fundamentais de Wiegner [36] relacionando u(•; t) com soluções evΔtu0 da equação do calor, adaptando o método recentemente introduzido em [22], [23] para a derivação destes resultados. O método de [22], [23] também é utilizado para estabelecermos (dimensão n=3) que, ocorrendo "blow- up"de u(•; t) em tempo finito t*, necessariamente t* < 0:159||u0||4Lp(Rn)º-5, sendo ν a viscosidade dinãmica do escoamento. |
| publishDate |
2008 |
| dc.date.accessioned.fl_str_mv |
2008-08-21T04:33:40Z |
| dc.date.issued.fl_str_mv |
2008 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/13714 |
| dc.identifier.nrb.pt_BR.fl_str_mv |
000651196 |
| url |
http://hdl.handle.net/10183/13714 |
| identifier_str_mv |
000651196 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
| instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
| instacron_str |
UFRGS |
| institution |
UFRGS |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da UFRGS |
| collection |
Biblioteca Digital de Teses e Dissertações da UFRGS |
| bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/13714/1/000651196.pdf http://www.lume.ufrgs.br/bitstream/10183/13714/2/000651196.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/13714/3/000651196.pdf.jpg |
| bitstream.checksum.fl_str_mv |
d66388017204d4a535bfcf4f6996eddf 388293b62f9fee9aade28923ad8d2369 4f70ed25dee92ca7fd4299c0d9c6219a |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
| repository.mail.fl_str_mv |
lume@ufrgs.br||lume@ufrgs.br |
| _version_ |
1831315848303738880 |