Crowd analysis using local neighborhood coherence

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Almeida, Igor Rodrigues de
Orientador(a): Jung, Claudio Rosito
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/212520
Resumo: Métodos para análise de ambientes de multidões são amplamente desenvolvidos na área de visão computacional. Esta tese apresenta uma abordagem para explorar características inerentes às multidões humanas - comunicação proxêmica e relações de vizinhança - para extrair características de multidões e usá-las para estimativa de fluxo de multidões e detecção e localização de anomalias. Dado o fluxo óptico produzido por qualquer método, a abordagem proposta compara a similaridade de cada vetor de fluxo e sua vizinhança usando a distância de Mahalanobis, que pode ser obtida de maneira eficiente usando imagens integrais. Esse valor de similaridade é então utilizado para filtrar o fluxo óptico original ou para extrair informações que descrevem o comportamento da multidão em diferentes resoluções, dependendo do raio do espaço pessoal selecionado na análise. Para mostrar que as características são realmente relevantes, testamos vários classificadores no contexto da detecção de anormalidades. Mais precisamente, usamos redes neurais recorrentes, redes neurais densas, máquinas de vetores de suporte, floresta aleatória e árvores extremamente aleatórias. As duas abordagens desenvolvidas (estimativa do fluxo de multidões e detecção de anormalidades) foram testadas em conjuntos de dados públicos, envolvendo cenários de multidões humanas e comparados com métodos estado-da-arte.
id URGS_d34e72f2b1a433ab94afafcd4a4a9332
oai_identifier_str oai:www.lume.ufrgs.br:10183/212520
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str
spelling Almeida, Igor Rodrigues deJung, Claudio Rosito2020-07-30T03:38:32Z2020http://hdl.handle.net/10183/212520001116497Métodos para análise de ambientes de multidões são amplamente desenvolvidos na área de visão computacional. Esta tese apresenta uma abordagem para explorar características inerentes às multidões humanas - comunicação proxêmica e relações de vizinhança - para extrair características de multidões e usá-las para estimativa de fluxo de multidões e detecção e localização de anomalias. Dado o fluxo óptico produzido por qualquer método, a abordagem proposta compara a similaridade de cada vetor de fluxo e sua vizinhança usando a distância de Mahalanobis, que pode ser obtida de maneira eficiente usando imagens integrais. Esse valor de similaridade é então utilizado para filtrar o fluxo óptico original ou para extrair informações que descrevem o comportamento da multidão em diferentes resoluções, dependendo do raio do espaço pessoal selecionado na análise. Para mostrar que as características são realmente relevantes, testamos vários classificadores no contexto da detecção de anormalidades. Mais precisamente, usamos redes neurais recorrentes, redes neurais densas, máquinas de vetores de suporte, floresta aleatória e árvores extremamente aleatórias. As duas abordagens desenvolvidas (estimativa do fluxo de multidões e detecção de anormalidades) foram testadas em conjuntos de dados públicos, envolvendo cenários de multidões humanas e comparados com métodos estado-da-arte.Large numbers of crowd analysis methods using computer vision have been developed in the past years. This dissertation presents an approach to explore characteristics inherent to human crowds – proxemics, and neighborhood relationship – with the purpose of extracting crowd features and using them for crowd flow estimation and anomaly detection and localization. Given the optical flow produced by any method, the proposed approach compares the similarity of each flow vector and its neighborhood using the Mahalanobis distance, which can be obtained in an efficient manner using integral images. This similarity value is then used either to filter the original optical flow or to extract features that describe the crowd behavior in different resolutions, depending on the radius of the personal space selected in the analysis. To show that the extracted features are indeed relevant, we tested several classifiers in the context of abnormality detection. More precisely, we used Recurrent Neural Networks, Dense Neural Networks, Support Vector Machines, Random Forest and Extremely Random Trees. The two developed approaches (crowd flow estimation and abnormality detection) were tested on publicly available datasets involving human crowded scenarios and compared with state-of-the-art methods.application/pdfengVisão computacionalMultidões humanasFluxo da multidãoFluxo óticoHuman CrowdsComputer VisionEvent DetectionCrowd analysis using local neighborhood coherenceAnálise de multidões usando coerência de vizinhança local info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisUniversidade Federal do Rio Grande do SulInstituto de InformáticaPrograma de Pós-Graduação em ComputaçãoPorto Alegre, BR-RS2020doutoradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001116497.pdf.txt001116497.pdf.txtExtracted Texttext/plain194396http://www.lume.ufrgs.br/bitstream/10183/212520/2/001116497.pdf.txtc30fbfa426f47244b46dd72d538e6ff8MD52ORIGINAL001116497.pdfTexto completo (inglês)application/pdf50417357http://www.lume.ufrgs.br/bitstream/10183/212520/1/001116497.pdf4ac22edb11564a9925096548f405f8f5MD5110183/2125202024-03-28 06:23:41.245381oai:www.lume.ufrgs.br:10183/212520Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532024-03-28T09:23:41Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Crowd analysis using local neighborhood coherence
dc.title.alternative.pt.fl_str_mv Análise de multidões usando coerência de vizinhança local
title Crowd analysis using local neighborhood coherence
spellingShingle Crowd analysis using local neighborhood coherence
Almeida, Igor Rodrigues de
Visão computacional
Multidões humanas
Fluxo da multidão
Fluxo ótico
Human Crowds
Computer Vision
Event Detection
title_short Crowd analysis using local neighborhood coherence
title_full Crowd analysis using local neighborhood coherence
title_fullStr Crowd analysis using local neighborhood coherence
title_full_unstemmed Crowd analysis using local neighborhood coherence
title_sort Crowd analysis using local neighborhood coherence
author Almeida, Igor Rodrigues de
author_facet Almeida, Igor Rodrigues de
author_role author
dc.contributor.author.fl_str_mv Almeida, Igor Rodrigues de
dc.contributor.advisor1.fl_str_mv Jung, Claudio Rosito
contributor_str_mv Jung, Claudio Rosito
dc.subject.por.fl_str_mv Visão computacional
Multidões humanas
Fluxo da multidão
Fluxo ótico
topic Visão computacional
Multidões humanas
Fluxo da multidão
Fluxo ótico
Human Crowds
Computer Vision
Event Detection
dc.subject.eng.fl_str_mv Human Crowds
Computer Vision
Event Detection
description Métodos para análise de ambientes de multidões são amplamente desenvolvidos na área de visão computacional. Esta tese apresenta uma abordagem para explorar características inerentes às multidões humanas - comunicação proxêmica e relações de vizinhança - para extrair características de multidões e usá-las para estimativa de fluxo de multidões e detecção e localização de anomalias. Dado o fluxo óptico produzido por qualquer método, a abordagem proposta compara a similaridade de cada vetor de fluxo e sua vizinhança usando a distância de Mahalanobis, que pode ser obtida de maneira eficiente usando imagens integrais. Esse valor de similaridade é então utilizado para filtrar o fluxo óptico original ou para extrair informações que descrevem o comportamento da multidão em diferentes resoluções, dependendo do raio do espaço pessoal selecionado na análise. Para mostrar que as características são realmente relevantes, testamos vários classificadores no contexto da detecção de anormalidades. Mais precisamente, usamos redes neurais recorrentes, redes neurais densas, máquinas de vetores de suporte, floresta aleatória e árvores extremamente aleatórias. As duas abordagens desenvolvidas (estimativa do fluxo de multidões e detecção de anormalidades) foram testadas em conjuntos de dados públicos, envolvendo cenários de multidões humanas e comparados com métodos estado-da-arte.
publishDate 2020
dc.date.accessioned.fl_str_mv 2020-07-30T03:38:32Z
dc.date.issued.fl_str_mv 2020
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/212520
dc.identifier.nrb.pt_BR.fl_str_mv 001116497
url http://hdl.handle.net/10183/212520
identifier_str_mv 001116497
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/212520/2/001116497.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/212520/1/001116497.pdf
bitstream.checksum.fl_str_mv c30fbfa426f47244b46dd72d538e6ff8
4ac22edb11564a9925096548f405f8f5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1831316098015821824