Crowd analysis using local neighborhood coherence
| Ano de defesa: | 2020 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Palavras-chave em Inglês: | |
| Link de acesso: | http://hdl.handle.net/10183/212520 |
Resumo: | Métodos para análise de ambientes de multidões são amplamente desenvolvidos na área de visão computacional. Esta tese apresenta uma abordagem para explorar características inerentes às multidões humanas - comunicação proxêmica e relações de vizinhança - para extrair características de multidões e usá-las para estimativa de fluxo de multidões e detecção e localização de anomalias. Dado o fluxo óptico produzido por qualquer método, a abordagem proposta compara a similaridade de cada vetor de fluxo e sua vizinhança usando a distância de Mahalanobis, que pode ser obtida de maneira eficiente usando imagens integrais. Esse valor de similaridade é então utilizado para filtrar o fluxo óptico original ou para extrair informações que descrevem o comportamento da multidão em diferentes resoluções, dependendo do raio do espaço pessoal selecionado na análise. Para mostrar que as características são realmente relevantes, testamos vários classificadores no contexto da detecção de anormalidades. Mais precisamente, usamos redes neurais recorrentes, redes neurais densas, máquinas de vetores de suporte, floresta aleatória e árvores extremamente aleatórias. As duas abordagens desenvolvidas (estimativa do fluxo de multidões e detecção de anormalidades) foram testadas em conjuntos de dados públicos, envolvendo cenários de multidões humanas e comparados com métodos estado-da-arte. |
| id |
URGS_d34e72f2b1a433ab94afafcd4a4a9332 |
|---|---|
| oai_identifier_str |
oai:www.lume.ufrgs.br:10183/212520 |
| network_acronym_str |
URGS |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da UFRGS |
| repository_id_str |
|
| spelling |
Almeida, Igor Rodrigues deJung, Claudio Rosito2020-07-30T03:38:32Z2020http://hdl.handle.net/10183/212520001116497Métodos para análise de ambientes de multidões são amplamente desenvolvidos na área de visão computacional. Esta tese apresenta uma abordagem para explorar características inerentes às multidões humanas - comunicação proxêmica e relações de vizinhança - para extrair características de multidões e usá-las para estimativa de fluxo de multidões e detecção e localização de anomalias. Dado o fluxo óptico produzido por qualquer método, a abordagem proposta compara a similaridade de cada vetor de fluxo e sua vizinhança usando a distância de Mahalanobis, que pode ser obtida de maneira eficiente usando imagens integrais. Esse valor de similaridade é então utilizado para filtrar o fluxo óptico original ou para extrair informações que descrevem o comportamento da multidão em diferentes resoluções, dependendo do raio do espaço pessoal selecionado na análise. Para mostrar que as características são realmente relevantes, testamos vários classificadores no contexto da detecção de anormalidades. Mais precisamente, usamos redes neurais recorrentes, redes neurais densas, máquinas de vetores de suporte, floresta aleatória e árvores extremamente aleatórias. As duas abordagens desenvolvidas (estimativa do fluxo de multidões e detecção de anormalidades) foram testadas em conjuntos de dados públicos, envolvendo cenários de multidões humanas e comparados com métodos estado-da-arte.Large numbers of crowd analysis methods using computer vision have been developed in the past years. This dissertation presents an approach to explore characteristics inherent to human crowds – proxemics, and neighborhood relationship – with the purpose of extracting crowd features and using them for crowd flow estimation and anomaly detection and localization. Given the optical flow produced by any method, the proposed approach compares the similarity of each flow vector and its neighborhood using the Mahalanobis distance, which can be obtained in an efficient manner using integral images. This similarity value is then used either to filter the original optical flow or to extract features that describe the crowd behavior in different resolutions, depending on the radius of the personal space selected in the analysis. To show that the extracted features are indeed relevant, we tested several classifiers in the context of abnormality detection. More precisely, we used Recurrent Neural Networks, Dense Neural Networks, Support Vector Machines, Random Forest and Extremely Random Trees. The two developed approaches (crowd flow estimation and abnormality detection) were tested on publicly available datasets involving human crowded scenarios and compared with state-of-the-art methods.application/pdfengVisão computacionalMultidões humanasFluxo da multidãoFluxo óticoHuman CrowdsComputer VisionEvent DetectionCrowd analysis using local neighborhood coherenceAnálise de multidões usando coerência de vizinhança local info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisUniversidade Federal do Rio Grande do SulInstituto de InformáticaPrograma de Pós-Graduação em ComputaçãoPorto Alegre, BR-RS2020doutoradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001116497.pdf.txt001116497.pdf.txtExtracted Texttext/plain194396http://www.lume.ufrgs.br/bitstream/10183/212520/2/001116497.pdf.txtc30fbfa426f47244b46dd72d538e6ff8MD52ORIGINAL001116497.pdfTexto completo (inglês)application/pdf50417357http://www.lume.ufrgs.br/bitstream/10183/212520/1/001116497.pdf4ac22edb11564a9925096548f405f8f5MD5110183/2125202024-03-28 06:23:41.245381oai:www.lume.ufrgs.br:10183/212520Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532024-03-28T09:23:41Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
| dc.title.pt_BR.fl_str_mv |
Crowd analysis using local neighborhood coherence |
| dc.title.alternative.pt.fl_str_mv |
Análise de multidões usando coerência de vizinhança local |
| title |
Crowd analysis using local neighborhood coherence |
| spellingShingle |
Crowd analysis using local neighborhood coherence Almeida, Igor Rodrigues de Visão computacional Multidões humanas Fluxo da multidão Fluxo ótico Human Crowds Computer Vision Event Detection |
| title_short |
Crowd analysis using local neighborhood coherence |
| title_full |
Crowd analysis using local neighborhood coherence |
| title_fullStr |
Crowd analysis using local neighborhood coherence |
| title_full_unstemmed |
Crowd analysis using local neighborhood coherence |
| title_sort |
Crowd analysis using local neighborhood coherence |
| author |
Almeida, Igor Rodrigues de |
| author_facet |
Almeida, Igor Rodrigues de |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Almeida, Igor Rodrigues de |
| dc.contributor.advisor1.fl_str_mv |
Jung, Claudio Rosito |
| contributor_str_mv |
Jung, Claudio Rosito |
| dc.subject.por.fl_str_mv |
Visão computacional Multidões humanas Fluxo da multidão Fluxo ótico |
| topic |
Visão computacional Multidões humanas Fluxo da multidão Fluxo ótico Human Crowds Computer Vision Event Detection |
| dc.subject.eng.fl_str_mv |
Human Crowds Computer Vision Event Detection |
| description |
Métodos para análise de ambientes de multidões são amplamente desenvolvidos na área de visão computacional. Esta tese apresenta uma abordagem para explorar características inerentes às multidões humanas - comunicação proxêmica e relações de vizinhança - para extrair características de multidões e usá-las para estimativa de fluxo de multidões e detecção e localização de anomalias. Dado o fluxo óptico produzido por qualquer método, a abordagem proposta compara a similaridade de cada vetor de fluxo e sua vizinhança usando a distância de Mahalanobis, que pode ser obtida de maneira eficiente usando imagens integrais. Esse valor de similaridade é então utilizado para filtrar o fluxo óptico original ou para extrair informações que descrevem o comportamento da multidão em diferentes resoluções, dependendo do raio do espaço pessoal selecionado na análise. Para mostrar que as características são realmente relevantes, testamos vários classificadores no contexto da detecção de anormalidades. Mais precisamente, usamos redes neurais recorrentes, redes neurais densas, máquinas de vetores de suporte, floresta aleatória e árvores extremamente aleatórias. As duas abordagens desenvolvidas (estimativa do fluxo de multidões e detecção de anormalidades) foram testadas em conjuntos de dados públicos, envolvendo cenários de multidões humanas e comparados com métodos estado-da-arte. |
| publishDate |
2020 |
| dc.date.accessioned.fl_str_mv |
2020-07-30T03:38:32Z |
| dc.date.issued.fl_str_mv |
2020 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/212520 |
| dc.identifier.nrb.pt_BR.fl_str_mv |
001116497 |
| url |
http://hdl.handle.net/10183/212520 |
| identifier_str_mv |
001116497 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
| instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
| instacron_str |
UFRGS |
| institution |
UFRGS |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da UFRGS |
| collection |
Biblioteca Digital de Teses e Dissertações da UFRGS |
| bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/212520/2/001116497.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/212520/1/001116497.pdf |
| bitstream.checksum.fl_str_mv |
c30fbfa426f47244b46dd72d538e6ff8 4ac22edb11564a9925096548f405f8f5 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
| repository.mail.fl_str_mv |
lume@ufrgs.br||lume@ufrgs.br |
| _version_ |
1831316098015821824 |