Problemas de coloração em grafos evitando famílias de padrões de grafos completos
| Ano de defesa: | 2023 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://hdl.handle.net/10183/259369 |
Resumo: | Nessa tese são abordados problemas dentro da Teoria Extremal de Grafos. Mais especificamente problemas de colorações de arestas, propostos inicialmente por Erdős e Rothschild. O primeiro problema considerado aqui envolve a família de padrões P*k que não contêm o padrão arco-íris KRk . Para todo k ≥ 3, apresentamos resultados em direção a obtenção de cotas inferiores e superiores para o parâmetro r0(P*k), que é o valor onde o grafo de Turán deixa de ser o grafo extremal. Ainda em relação a família P*k , apresentamos uma construção para uma cota superior ω(P*k) em relação ao parâmetro r0(P*k), onde, para todo r ≥ ω(P*k), o grafo de Turán Tk−1(n) não é mais o grafo (r,P*k)-extremal. Outra contribuição do nosso trabalho é para k = 3, e considerando o padrão K (2) 3 da família P*3 , determinamos que o parâmetro r0(K (2) 3 ) vale 26. Mais especificamente, provamos que o grafo de Turán T2(n) é o único grafo extremal, para o padrão K (2) 3 , onde 2 ≤ r ≤ 26. A principal contribuição dessa tese é a incorporação de um componente indutivo na prova desse resultado, o que nos permite explorar melhor as restrições locais e estender o resultado de [24] para todos os valores de r para os quais foi conjecturado. Por último, aplicamos a estrutura de demonstração desenvolvida na solução do problema do parágrafo acima, obtemos progresso no melhoramento da cota inferior de r0(P*4). Conseguimos encontrar uma cota inferior µ4(P*4) que melhora a cota inferior dada pelo primeiro resultado desse trabalho, mostrando assim que essa técnica tem potencial para ser empregada para melhorar resultados já existentes. |
| id |
URGS_e220c5f756bcfa343cc62d5e170a4e4e |
|---|---|
| oai_identifier_str |
oai:www.lume.ufrgs.br:10183/259369 |
| network_acronym_str |
URGS |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da UFRGS |
| repository_id_str |
|
| spelling |
Schmidt, Dionatan RicardoHoppen, Carlos2023-06-24T03:34:49Z2023http://hdl.handle.net/10183/259369001170418Nessa tese são abordados problemas dentro da Teoria Extremal de Grafos. Mais especificamente problemas de colorações de arestas, propostos inicialmente por Erdős e Rothschild. O primeiro problema considerado aqui envolve a família de padrões P*k que não contêm o padrão arco-íris KRk . Para todo k ≥ 3, apresentamos resultados em direção a obtenção de cotas inferiores e superiores para o parâmetro r0(P*k), que é o valor onde o grafo de Turán deixa de ser o grafo extremal. Ainda em relação a família P*k , apresentamos uma construção para uma cota superior ω(P*k) em relação ao parâmetro r0(P*k), onde, para todo r ≥ ω(P*k), o grafo de Turán Tk−1(n) não é mais o grafo (r,P*k)-extremal. Outra contribuição do nosso trabalho é para k = 3, e considerando o padrão K (2) 3 da família P*3 , determinamos que o parâmetro r0(K (2) 3 ) vale 26. Mais especificamente, provamos que o grafo de Turán T2(n) é o único grafo extremal, para o padrão K (2) 3 , onde 2 ≤ r ≤ 26. A principal contribuição dessa tese é a incorporação de um componente indutivo na prova desse resultado, o que nos permite explorar melhor as restrições locais e estender o resultado de [24] para todos os valores de r para os quais foi conjecturado. Por último, aplicamos a estrutura de demonstração desenvolvida na solução do problema do parágrafo acima, obtemos progresso no melhoramento da cota inferior de r0(P*4). Conseguimos encontrar uma cota inferior µ4(P*4) que melhora a cota inferior dada pelo primeiro resultado desse trabalho, mostrando assim que essa técnica tem potencial para ser empregada para melhorar resultados já existentes.application/pdfporTeoria extremal de grafosColoração de arestasGrafosProblemas de coloração em grafos evitando famílias de padrões de grafos completosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisUniversidade Federal do Rio Grande do SulInstituto de Matemática e EstatísticaPrograma de Pós-Graduação em Matemática AplicadaPorto Alegre, BR-RS2023doutoradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001170418.pdf.txt001170418.pdf.txtExtracted Texttext/plain169073http://www.lume.ufrgs.br/bitstream/10183/259369/2/001170418.pdf.txt3e6974c5b09c437bdc52fc55355f7067MD52ORIGINAL001170418.pdfTexto completoapplication/pdf621550http://www.lume.ufrgs.br/bitstream/10183/259369/1/001170418.pdfad247468d94c67f5adf2652b6a722af9MD5110183/2593692023-06-25 03:41:53.159121oai:www.lume.ufrgs.br:10183/259369Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532023-06-25T06:41:53Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
| dc.title.pt_BR.fl_str_mv |
Problemas de coloração em grafos evitando famílias de padrões de grafos completos |
| title |
Problemas de coloração em grafos evitando famílias de padrões de grafos completos |
| spellingShingle |
Problemas de coloração em grafos evitando famílias de padrões de grafos completos Schmidt, Dionatan Ricardo Teoria extremal de grafos Coloração de arestas Grafos |
| title_short |
Problemas de coloração em grafos evitando famílias de padrões de grafos completos |
| title_full |
Problemas de coloração em grafos evitando famílias de padrões de grafos completos |
| title_fullStr |
Problemas de coloração em grafos evitando famílias de padrões de grafos completos |
| title_full_unstemmed |
Problemas de coloração em grafos evitando famílias de padrões de grafos completos |
| title_sort |
Problemas de coloração em grafos evitando famílias de padrões de grafos completos |
| author |
Schmidt, Dionatan Ricardo |
| author_facet |
Schmidt, Dionatan Ricardo |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Schmidt, Dionatan Ricardo |
| dc.contributor.advisor1.fl_str_mv |
Hoppen, Carlos |
| contributor_str_mv |
Hoppen, Carlos |
| dc.subject.por.fl_str_mv |
Teoria extremal de grafos Coloração de arestas Grafos |
| topic |
Teoria extremal de grafos Coloração de arestas Grafos |
| description |
Nessa tese são abordados problemas dentro da Teoria Extremal de Grafos. Mais especificamente problemas de colorações de arestas, propostos inicialmente por Erdős e Rothschild. O primeiro problema considerado aqui envolve a família de padrões P*k que não contêm o padrão arco-íris KRk . Para todo k ≥ 3, apresentamos resultados em direção a obtenção de cotas inferiores e superiores para o parâmetro r0(P*k), que é o valor onde o grafo de Turán deixa de ser o grafo extremal. Ainda em relação a família P*k , apresentamos uma construção para uma cota superior ω(P*k) em relação ao parâmetro r0(P*k), onde, para todo r ≥ ω(P*k), o grafo de Turán Tk−1(n) não é mais o grafo (r,P*k)-extremal. Outra contribuição do nosso trabalho é para k = 3, e considerando o padrão K (2) 3 da família P*3 , determinamos que o parâmetro r0(K (2) 3 ) vale 26. Mais especificamente, provamos que o grafo de Turán T2(n) é o único grafo extremal, para o padrão K (2) 3 , onde 2 ≤ r ≤ 26. A principal contribuição dessa tese é a incorporação de um componente indutivo na prova desse resultado, o que nos permite explorar melhor as restrições locais e estender o resultado de [24] para todos os valores de r para os quais foi conjecturado. Por último, aplicamos a estrutura de demonstração desenvolvida na solução do problema do parágrafo acima, obtemos progresso no melhoramento da cota inferior de r0(P*4). Conseguimos encontrar uma cota inferior µ4(P*4) que melhora a cota inferior dada pelo primeiro resultado desse trabalho, mostrando assim que essa técnica tem potencial para ser empregada para melhorar resultados já existentes. |
| publishDate |
2023 |
| dc.date.accessioned.fl_str_mv |
2023-06-24T03:34:49Z |
| dc.date.issued.fl_str_mv |
2023 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/259369 |
| dc.identifier.nrb.pt_BR.fl_str_mv |
001170418 |
| url |
http://hdl.handle.net/10183/259369 |
| identifier_str_mv |
001170418 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
| instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
| instacron_str |
UFRGS |
| institution |
UFRGS |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da UFRGS |
| collection |
Biblioteca Digital de Teses e Dissertações da UFRGS |
| bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/259369/2/001170418.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/259369/1/001170418.pdf |
| bitstream.checksum.fl_str_mv |
3e6974c5b09c437bdc52fc55355f7067 ad247468d94c67f5adf2652b6a722af9 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
| repository.mail.fl_str_mv |
lume@ufrgs.br||lume@ufrgs.br |
| _version_ |
1831316159008342016 |