Os efeitos de usar estimativas de conhecimento do aluno em programação de computadores em modelos livres de sensores de detecção da emoção confusão

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Kautzmann, Tiago Roberto
Orientador(a): Maillard, Patrícia Augustin Jaques
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade do Vale do Rio dos Sinos
Programa de Pós-Graduação: Programa de Pós-Graduação em Computação Aplicada
Departamento: Escola Politécnica
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://www.repositorio.jesuita.org.br/handle/UNISINOS/11830
Resumo: A área de pesquisa em Computação Afetiva tem buscado formas de melhorar a detecção da confusão do aluno em ambientes computacionais de aprendizagem. Ambientes capazes de detectar a confusão do estudante podem utilizar diferentes estratégias pedagógicas, como intervir no ambiente e auxiliar o aluno a resolver sua confusão ou controlar a confusão do aluno para beneficiar sua aprendizagem. O autor tem interesse em contribuir com o estado da arte na detecção da confusão sem o uso de sensores (livre de sensores) no contexto de aprendizagem de programação de computadores. A Tese levantou a hipótese de que utilizar dados sobre estimativas de conhecimento do aluno, juntamente de dados de interação do aluno com o ambiente computacional, pode melhorar o desempenho de modelos de aprendizado de máquina livres de sensores na detecção da confusão do estudante em tarefas de aprendizagem de programação, quando comparado a modelos baseline. Os modelos baseline representam os trabalhos relacionados, que desenvolveram seus modelos utilizando dados de interação do aluno com o ambiente. A hipótese da Tese é justificada em teorias cognitivas de emoções, que relacionam a confusão com avaliações (appraisals) de incompatibilidade entre a informação que chega para o aluno e o modelo mental do estudante, como o modelo mental de conhecimento anterior. Para verificar sua hipótese, a trabalho gerou diversos modelos de aprendizado de máquina que representam a abordagem da Tese (hipótese da Tese) e a abordagem baseline (trabalhos relacionados), para diferentes configurações de janelas de tempo de observação (5, 10, 20, 40, 60, 90, 120, 180, 240 e 360 segundos e variável), e para diferentes algoritmos. Testes estatísticos compararam os resultados dos modelos de cada abordagem (Tese e baseline). Também foram aplicados métodos para verificar os dados mais relevantes para os modelos e verificar o poder de generalização para estudantes com características heterogêneas. Os modelos de aprendizado de máquina foram treinados e testados com amostras formadas por dados coletados de 62 alunos de ensino técnico e superior, durante cinco meses, enquanto solucionavam exercícios em um software de programação adaptado para a Tese. Testes estatísticos mostraram que os melhores modelos da Tese apresentaram acurácia preditiva superior e significativa em relação aos melhores modelos baseline, em todas as janelas de observação. Em uma relação dos dez atributos de dados mais relevantes para os melhores modelos da Tese, cinco foram atributos sobre interação com o ambiente e os outros cinco foram atributos sobre estimativas de conhecimento do aluno. Em relação ao poder de generalização para estudantes com características heterogêneas, foram encontradas diferenças significativas e consistentes entre as abordagens em janelas de observação de 5, 10 e 20 segundos. Nestas janelas, o desempenho dos melhores modelos da Tese foi superior ao desempenho dos melhores modelos baseline. Os resultados apresentaram evidências positivas que suportam a hipótese da Tese, de que estimativas de conhecimento do aluno podem melhorar o desempenho de modelos de detecção de confusão livres de sensores nas tarefas de programação. A Tese apresenta discussões para outros resultados intermediários e sobre cenários onde a abordagem apresentada é mais vantajosa.
id USIN_0eeb66aa79f5f93faf00121f4c0abdd4
oai_identifier_str oai:www.repositorio.jesuita.org.br:UNISINOS/11830
network_acronym_str USIN
network_name_str Repositório Institucional da UNISINOS (RBDU Repositório Digital da Biblioteca da Unisinos)
repository_id_str
spelling 2022-08-16T17:25:25Z2022-08-16T17:25:25Z2022-06-06Submitted by Jeferson Carlos da Veiga Rodrigues (jveigar@unisinos.br) on 2022-08-16T17:25:25Z No. of bitstreams: 1 Tiago Roberto Kautzmann_.pdf: 9368244 bytes, checksum: 3ecc010b14199c6e9e79638b48c6449e (MD5)Made available in DSpace on 2022-08-16T17:25:25Z (GMT). No. of bitstreams: 1 Tiago Roberto Kautzmann_.pdf: 9368244 bytes, checksum: 3ecc010b14199c6e9e79638b48c6449e (MD5) Previous issue date: 2022-06-06A área de pesquisa em Computação Afetiva tem buscado formas de melhorar a detecção da confusão do aluno em ambientes computacionais de aprendizagem. Ambientes capazes de detectar a confusão do estudante podem utilizar diferentes estratégias pedagógicas, como intervir no ambiente e auxiliar o aluno a resolver sua confusão ou controlar a confusão do aluno para beneficiar sua aprendizagem. O autor tem interesse em contribuir com o estado da arte na detecção da confusão sem o uso de sensores (livre de sensores) no contexto de aprendizagem de programação de computadores. A Tese levantou a hipótese de que utilizar dados sobre estimativas de conhecimento do aluno, juntamente de dados de interação do aluno com o ambiente computacional, pode melhorar o desempenho de modelos de aprendizado de máquina livres de sensores na detecção da confusão do estudante em tarefas de aprendizagem de programação, quando comparado a modelos baseline. Os modelos baseline representam os trabalhos relacionados, que desenvolveram seus modelos utilizando dados de interação do aluno com o ambiente. A hipótese da Tese é justificada em teorias cognitivas de emoções, que relacionam a confusão com avaliações (appraisals) de incompatibilidade entre a informação que chega para o aluno e o modelo mental do estudante, como o modelo mental de conhecimento anterior. Para verificar sua hipótese, a trabalho gerou diversos modelos de aprendizado de máquina que representam a abordagem da Tese (hipótese da Tese) e a abordagem baseline (trabalhos relacionados), para diferentes configurações de janelas de tempo de observação (5, 10, 20, 40, 60, 90, 120, 180, 240 e 360 segundos e variável), e para diferentes algoritmos. Testes estatísticos compararam os resultados dos modelos de cada abordagem (Tese e baseline). Também foram aplicados métodos para verificar os dados mais relevantes para os modelos e verificar o poder de generalização para estudantes com características heterogêneas. Os modelos de aprendizado de máquina foram treinados e testados com amostras formadas por dados coletados de 62 alunos de ensino técnico e superior, durante cinco meses, enquanto solucionavam exercícios em um software de programação adaptado para a Tese. Testes estatísticos mostraram que os melhores modelos da Tese apresentaram acurácia preditiva superior e significativa em relação aos melhores modelos baseline, em todas as janelas de observação. Em uma relação dos dez atributos de dados mais relevantes para os melhores modelos da Tese, cinco foram atributos sobre interação com o ambiente e os outros cinco foram atributos sobre estimativas de conhecimento do aluno. Em relação ao poder de generalização para estudantes com características heterogêneas, foram encontradas diferenças significativas e consistentes entre as abordagens em janelas de observação de 5, 10 e 20 segundos. Nestas janelas, o desempenho dos melhores modelos da Tese foi superior ao desempenho dos melhores modelos baseline. Os resultados apresentaram evidências positivas que suportam a hipótese da Tese, de que estimativas de conhecimento do aluno podem melhorar o desempenho de modelos de detecção de confusão livres de sensores nas tarefas de programação. A Tese apresenta discussões para outros resultados intermediários e sobre cenários onde a abordagem apresentada é mais vantajosa.The research area of Affective Computing has been looking for ways to improve the detection of student confusion in computer-based learning environments. Environments capable of detecting student confusion can use different pedagogical strategies, such as intervening in the environment and helping students resolve their confusion or controlling it to benefit their learning. The author is interested in contributing to state the art in detecting confusion without using physical sensors (sensor-free) in the context of computer programming learning. The Thesis hypothesized that using data on student knowledge estimates and data on student interaction with the computer-based learning environment can improve the performance of sensor-free machine learning models in detecting student confusion in tasks of programming learning compared to baseline models. Baseline models represent related works, which developed their models using only student environment interaction data. The Thesis hypothesis is justified in cognitive theories of emotions, which relate the confusion with appraisals of incompatibility between the information that comes to the student and the student's mental model, such as the mental model of prior knowledge. To verify its hypothesis, the Thesis generated several machine learning models that represent the Thesis approach (Thesis hypothesis) and the baseline approach (related works) for different configurations of observation time windows (5, 10, 20, 40, 60, 90, 120, 180, 240 and 360 seconds and variable) and different algorithms. Statistical tests compared the results of each approach (Thesis and baseline). Methods were also applied to verify the models' most relevant data and the generalization performance for students with heterogeneous characteristics. The machine learning models were trained and tested with samples formed by data collected from 62 technical and higher education students for five months while solving exercises in a programming software adapted for the Thesis. Statistical tests showed that the best models of the Thesis approach presented superior and significant predictive accuracy compared to the best baseline models in all observation windows. In a list of the ten most relevant data attributes for the best models of the Thesis approach, five were attributes about interaction with the environment, and the other five were attributes about estimates of student knowledge. Regarding the performance of generalization for students with heterogeneous characteristics, significant differences were found between the approaches only in observation windows of 5, 10, and 20 seconds. In these windows, the performance of the thesis approach's best models was superior to that of the best baseline models. The results presented positive evidence that supports the hypothesis raised that estimates of student knowledge can improve the performance of sensor-free confusion detection models in computer programming tasks. The Thesis presents discussions for several other intermediate results and the scenarios where the Thesis approach is most advantageous.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorKautzmann, Tiago Robertohttp://lattes.cnpq.br/6635781352521505http://lattes.cnpq.br/5723385125570881Ramos, Gabriel de Oliveirahttp://lattes.cnpq.br/9281736089055094Maillard, Patrícia Augustin JaquesUniversidade do Vale do Rio dos SinosPrograma de Pós-Graduação em Computação AplicadaUnisinosBrasilEscola PolitécnicaOs efeitos de usar estimativas de conhecimento do aluno em programação de computadores em modelos livres de sensores de detecção da emoção confusãoACCNPQ::Ciências Exatas e da Terra::Ciência da ComputaçãoDetecção de confusãoAmbiente computacional de aprendizagemProgramação de computadoresAprendizado de máquinaComputação afetivaConfusion detectionComputer-based learning environmentComputer programmingMachine learningAfective computinginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesishttp://www.repositorio.jesuita.org.br/handle/UNISINOS/11830info:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UNISINOS (RBDU Repositório Digital da Biblioteca da Unisinos)instname:Universidade do Vale do Rio dos Sinos (UNISINOS)instacron:UNISINOSLICENSElicense.txtlicense.txttext/plain; charset=utf-82175http://repositorio.jesuita.org.br/bitstream/UNISINOS/11830/2/license.txt320e21f23402402ac4988605e1edd177MD52ORIGINALTiago Roberto Kautzmann_.pdfTiago Roberto Kautzmann_.pdfapplication/pdf9368244http://repositorio.jesuita.org.br/bitstream/UNISINOS/11830/1/Tiago+Roberto+Kautzmann_.pdf3ecc010b14199c6e9e79638b48c6449eMD51UNISINOS/118302022-08-16 14:26:30.24oai:www.repositorio.jesuita.org.br:UNISINOS/11830Ck5PVEE6IENPTE9RVUUgQVFVSSBBIFNVQSBQUsOTUFJJQSBMSUNFTsOHQQoKRXN0YSBsaWNlbsOnYSBkZSBleGVtcGxvIMOpIGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxpY2Vuw6dhIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSwgdm9jw6ogKG8gYXV0b3IgKGVzKSBvdSBvIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGRlIGF1dG9yKSBjb25jZWRlIMOgIApVbml2ZXJzaWRhZGUgZG8gVmFsZSBkbyBSaW8gZG9zIFNpbm9zIChVTklTSU5PUykgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLDtG5pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdSAKZGlzc2VydGHDp8OjbyBwYXJhIGZpbnMgZGUgc2VndXJhbsOnYSwgYmFjay11cCBlIHByZXNlcnZhw6fDo28uCgpWb2PDqiBkZWNsYXJhIHF1ZSBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gw6kgb3JpZ2luYWwgZSBxdWUgdm9jw6ogdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IApjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6ogCmRlY2xhcmEgcXVlIG9idGV2ZSBhIHBlcm1pc3PDo28gaXJyZXN0cml0YSBkbyBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGFyYSBjb25jZWRlciDDoCBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbsOnYSwgZSBxdWUgZXNzZSBtYXRlcmlhbCBkZSBwcm9wcmllZGFkZSBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSAKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgCkFQT0lPIERFIFVNQSBBR8OKTkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTsODTyBTRUpBIEEgU0lHTEEgREUgClVOSVZFUlNJREFERSwgVk9Dw4ogREVDTEFSQSBRVUUgUkVTUEVJVE9VIFRPRE9TIEUgUVVBSVNRVUVSIERJUkVJVE9TIERFIFJFVklTw4NPIENPTU8gClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyAKY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KBiblioteca Digital de Teses e DissertaçõesPRIhttp://www.repositorio.jesuita.org.br/oai/requestmaicons@unisinos.br ||dspace@unisinos.bropendoar:2022-08-16T17:26:30Repositório Institucional da UNISINOS (RBDU Repositório Digital da Biblioteca da Unisinos) - Universidade do Vale do Rio dos Sinos (UNISINOS)false
dc.title.pt_BR.fl_str_mv Os efeitos de usar estimativas de conhecimento do aluno em programação de computadores em modelos livres de sensores de detecção da emoção confusão
title Os efeitos de usar estimativas de conhecimento do aluno em programação de computadores em modelos livres de sensores de detecção da emoção confusão
spellingShingle Os efeitos de usar estimativas de conhecimento do aluno em programação de computadores em modelos livres de sensores de detecção da emoção confusão
Kautzmann, Tiago Roberto
ACCNPQ::Ciências Exatas e da Terra::Ciência da Computação
Detecção de confusão
Ambiente computacional de aprendizagem
Programação de computadores
Aprendizado de máquina
Computação afetiva
Confusion detection
Computer-based learning environment
Computer programming
Machine learning
Afective computing
title_short Os efeitos de usar estimativas de conhecimento do aluno em programação de computadores em modelos livres de sensores de detecção da emoção confusão
title_full Os efeitos de usar estimativas de conhecimento do aluno em programação de computadores em modelos livres de sensores de detecção da emoção confusão
title_fullStr Os efeitos de usar estimativas de conhecimento do aluno em programação de computadores em modelos livres de sensores de detecção da emoção confusão
title_full_unstemmed Os efeitos de usar estimativas de conhecimento do aluno em programação de computadores em modelos livres de sensores de detecção da emoção confusão
title_sort Os efeitos de usar estimativas de conhecimento do aluno em programação de computadores em modelos livres de sensores de detecção da emoção confusão
author Kautzmann, Tiago Roberto
author_facet Kautzmann, Tiago Roberto
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/6635781352521505
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/5723385125570881
dc.contributor.author.fl_str_mv Kautzmann, Tiago Roberto
dc.contributor.advisor-co1.fl_str_mv Ramos, Gabriel de Oliveira
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/9281736089055094
dc.contributor.advisor1.fl_str_mv Maillard, Patrícia Augustin Jaques
contributor_str_mv Ramos, Gabriel de Oliveira
Maillard, Patrícia Augustin Jaques
dc.subject.cnpq.fl_str_mv ACCNPQ::Ciências Exatas e da Terra::Ciência da Computação
topic ACCNPQ::Ciências Exatas e da Terra::Ciência da Computação
Detecção de confusão
Ambiente computacional de aprendizagem
Programação de computadores
Aprendizado de máquina
Computação afetiva
Confusion detection
Computer-based learning environment
Computer programming
Machine learning
Afective computing
dc.subject.por.fl_str_mv Detecção de confusão
Ambiente computacional de aprendizagem
Programação de computadores
Aprendizado de máquina
Computação afetiva
dc.subject.eng.fl_str_mv Confusion detection
Computer-based learning environment
Computer programming
Machine learning
Afective computing
description A área de pesquisa em Computação Afetiva tem buscado formas de melhorar a detecção da confusão do aluno em ambientes computacionais de aprendizagem. Ambientes capazes de detectar a confusão do estudante podem utilizar diferentes estratégias pedagógicas, como intervir no ambiente e auxiliar o aluno a resolver sua confusão ou controlar a confusão do aluno para beneficiar sua aprendizagem. O autor tem interesse em contribuir com o estado da arte na detecção da confusão sem o uso de sensores (livre de sensores) no contexto de aprendizagem de programação de computadores. A Tese levantou a hipótese de que utilizar dados sobre estimativas de conhecimento do aluno, juntamente de dados de interação do aluno com o ambiente computacional, pode melhorar o desempenho de modelos de aprendizado de máquina livres de sensores na detecção da confusão do estudante em tarefas de aprendizagem de programação, quando comparado a modelos baseline. Os modelos baseline representam os trabalhos relacionados, que desenvolveram seus modelos utilizando dados de interação do aluno com o ambiente. A hipótese da Tese é justificada em teorias cognitivas de emoções, que relacionam a confusão com avaliações (appraisals) de incompatibilidade entre a informação que chega para o aluno e o modelo mental do estudante, como o modelo mental de conhecimento anterior. Para verificar sua hipótese, a trabalho gerou diversos modelos de aprendizado de máquina que representam a abordagem da Tese (hipótese da Tese) e a abordagem baseline (trabalhos relacionados), para diferentes configurações de janelas de tempo de observação (5, 10, 20, 40, 60, 90, 120, 180, 240 e 360 segundos e variável), e para diferentes algoritmos. Testes estatísticos compararam os resultados dos modelos de cada abordagem (Tese e baseline). Também foram aplicados métodos para verificar os dados mais relevantes para os modelos e verificar o poder de generalização para estudantes com características heterogêneas. Os modelos de aprendizado de máquina foram treinados e testados com amostras formadas por dados coletados de 62 alunos de ensino técnico e superior, durante cinco meses, enquanto solucionavam exercícios em um software de programação adaptado para a Tese. Testes estatísticos mostraram que os melhores modelos da Tese apresentaram acurácia preditiva superior e significativa em relação aos melhores modelos baseline, em todas as janelas de observação. Em uma relação dos dez atributos de dados mais relevantes para os melhores modelos da Tese, cinco foram atributos sobre interação com o ambiente e os outros cinco foram atributos sobre estimativas de conhecimento do aluno. Em relação ao poder de generalização para estudantes com características heterogêneas, foram encontradas diferenças significativas e consistentes entre as abordagens em janelas de observação de 5, 10 e 20 segundos. Nestas janelas, o desempenho dos melhores modelos da Tese foi superior ao desempenho dos melhores modelos baseline. Os resultados apresentaram evidências positivas que suportam a hipótese da Tese, de que estimativas de conhecimento do aluno podem melhorar o desempenho de modelos de detecção de confusão livres de sensores nas tarefas de programação. A Tese apresenta discussões para outros resultados intermediários e sobre cenários onde a abordagem apresentada é mais vantajosa.
publishDate 2022
dc.date.accessioned.fl_str_mv 2022-08-16T17:25:25Z
dc.date.available.fl_str_mv 2022-08-16T17:25:25Z
dc.date.issued.fl_str_mv 2022-06-06
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.repositorio.jesuita.org.br/handle/UNISINOS/11830
url http://www.repositorio.jesuita.org.br/handle/UNISINOS/11830
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade do Vale do Rio dos Sinos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Computação Aplicada
dc.publisher.initials.fl_str_mv Unisinos
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Escola Politécnica
publisher.none.fl_str_mv Universidade do Vale do Rio dos Sinos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNISINOS (RBDU Repositório Digital da Biblioteca da Unisinos)
instname:Universidade do Vale do Rio dos Sinos (UNISINOS)
instacron:UNISINOS
instname_str Universidade do Vale do Rio dos Sinos (UNISINOS)
instacron_str UNISINOS
institution UNISINOS
reponame_str Repositório Institucional da UNISINOS (RBDU Repositório Digital da Biblioteca da Unisinos)
collection Repositório Institucional da UNISINOS (RBDU Repositório Digital da Biblioteca da Unisinos)
bitstream.url.fl_str_mv http://repositorio.jesuita.org.br/bitstream/UNISINOS/11830/2/license.txt
http://repositorio.jesuita.org.br/bitstream/UNISINOS/11830/1/Tiago+Roberto+Kautzmann_.pdf
bitstream.checksum.fl_str_mv 320e21f23402402ac4988605e1edd177
3ecc010b14199c6e9e79638b48c6449e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UNISINOS (RBDU Repositório Digital da Biblioteca da Unisinos) - Universidade do Vale do Rio dos Sinos (UNISINOS)
repository.mail.fl_str_mv maicons@unisinos.br ||dspace@unisinos.br
_version_ 1853242094597963776