Síntese das técnicas de identificação de sistemas não lineares: estruturas de modelo de Hammerstein-Wiener e NARMAX

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Binkowski, Cassio
Orientador(a): Mejía, Rodrigo Iván Goytia
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade do Vale do Rio dos Sinos
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Elétrica
Departamento: Escola Politécnica
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://www.repositorio.jesuita.org.br/handle/UNISINOS/5997
Resumo: A identificação de sistemas está longe de ser uma tarefa nova. Sendo inicialmente proposta na metade do século XX, foi extensamente desenvolvida para sistemas lineares, devido às exigências da época relacionadas à complexidade dos sistemas e também do poder computacional, atingindo excelente resultados. No entanto, com o aumento da complexidade dos sistemas e das exigências de controle, os modelos lineares não mais conseguiam representar os sistemas em toda a faixa de operação exigida, sendo assim requerendo uma aplicação dos modelos não-lineares. Visto que todos os sistemas presentes na natureza possuem certo grau de não linearidade, é correto afirmar que um modelo não-linear é capaz de representar as dinâmicas dos sistemas de forma mais compreensiva que um modelo linear. A identificação de sistemas não lineares foi então estudada e diversos modelos foram propostos, atingindo ótimos resultados. Nesse trabalho foi realizado um estudo de dois modelos não-lineares, NARMAX e Hammerstein-Wiener, aplicando esses modelos a dois processos simulados. Foram então derivados dois algoritmos para realizar a estimação dos parâmetros dos modelos NARMAX e Hammerstein-Wiener, utilizando um estimador ortogonal, e também um algoritmo para geração de sinais de entrada multinível. Os modelos foram então estimados para os sistemas simulados, e comparados utilizando os critérios AIC, FPE, Lipschitz e de correlação cruzada de alta ordem. Os melhores resultados foram obtidos com os modelos Hammerstein-Wiener-OLS e NARMAX-OLS, ao contrário do modelo NARMAX-RLS. No entanto, devido a resultados bastante divergentes entre os modelos, pode-se concluir que essa área ainda carece de desenvolvimento de técnicas precisas para comparação e avaliação de modelos, bem como quanto à quantificação do nível de não-linearidade do sistema em questão.
id USIN_f7cd1f47d46d2fb3367a45d4ad993cb1
oai_identifier_str oai:www.repositorio.jesuita.org.br:UNISINOS/5997
network_acronym_str USIN
network_name_str Repositório Institucional da UNISINOS (RBDU Repositório Digital da Biblioteca da Unisinos)
repository_id_str
spelling 2016-12-23T10:42:59Z2016-12-23T10:42:59Z2016-09-14Submitted by Silvana Teresinha Dornelles Studzinski (sstudzinski) on 2016-12-23T10:42:58Z No. of bitstreams: 1 Cassio Binkowski_.pdf: 1965327 bytes, checksum: 87b7380f1bab367237fb868e0de20388 (MD5)Made available in DSpace on 2016-12-23T10:42:59Z (GMT). No. of bitstreams: 1 Cassio Binkowski_.pdf: 1965327 bytes, checksum: 87b7380f1bab367237fb868e0de20388 (MD5) Previous issue date: 2016-09-14A identificação de sistemas está longe de ser uma tarefa nova. Sendo inicialmente proposta na metade do século XX, foi extensamente desenvolvida para sistemas lineares, devido às exigências da época relacionadas à complexidade dos sistemas e também do poder computacional, atingindo excelente resultados. No entanto, com o aumento da complexidade dos sistemas e das exigências de controle, os modelos lineares não mais conseguiam representar os sistemas em toda a faixa de operação exigida, sendo assim requerendo uma aplicação dos modelos não-lineares. Visto que todos os sistemas presentes na natureza possuem certo grau de não linearidade, é correto afirmar que um modelo não-linear é capaz de representar as dinâmicas dos sistemas de forma mais compreensiva que um modelo linear. A identificação de sistemas não lineares foi então estudada e diversos modelos foram propostos, atingindo ótimos resultados. Nesse trabalho foi realizado um estudo de dois modelos não-lineares, NARMAX e Hammerstein-Wiener, aplicando esses modelos a dois processos simulados. Foram então derivados dois algoritmos para realizar a estimação dos parâmetros dos modelos NARMAX e Hammerstein-Wiener, utilizando um estimador ortogonal, e também um algoritmo para geração de sinais de entrada multinível. Os modelos foram então estimados para os sistemas simulados, e comparados utilizando os critérios AIC, FPE, Lipschitz e de correlação cruzada de alta ordem. Os melhores resultados foram obtidos com os modelos Hammerstein-Wiener-OLS e NARMAX-OLS, ao contrário do modelo NARMAX-RLS. No entanto, devido a resultados bastante divergentes entre os modelos, pode-se concluir que essa área ainda carece de desenvolvimento de técnicas precisas para comparação e avaliação de modelos, bem como quanto à quantificação do nível de não-linearidade do sistema em questão.The task of system identification is far from being a new one. It was initially proposed in the mid of the 20th century, and had then been extensively developed for linear systems, due to the demands of that time concerning computational power, systems complexity and control requirements. It has achieved excellent results in this approach. However, due to the rise of systems complexity and control requirements, linear models were no longer able to meet the desired accuracy and larger operating range, and therefore the usage nonlinear models were pursued. As all systems in nature are nonlinear to some extent, it is correct to state that nonlinear models can represent a whole lot more of systems’ dynamics than linear models. Nonlinear models were then studied, and several techniques were presented, being able to achieve very good results. In this work, two of the available nonlinear models were studied, namely NARMAX and Hammerstein-Wiener, applying these models in two simulated systems. Two algorithms were then derived to estimate parameters for NARMAX and Hammerstein-Wiener models using an orthogonal estimator, and also an algorithm for generating multi-level input signals. The models were then estimated to the simulated systems, and compared using the AIC, FPE, Lipschitz and high-order cross-correlation criteria. The best results were obtained for the Hammerstein-Wiener-OLS and NARMAX-OLS models, as opposed to the NARMAX-RLS model. However, due to divergent observed results between models, it can be concluded that precise methods for model comparison and validation still needs to be developed, as well as a method for nonlinearity quantification for the system in hand.NenhumaBinkowski, Cassiohttp://lattes.cnpq.br/9455664934951327http://lattes.cnpq.br/4302770186505370Silva, Márcio Rosa dahttp://lattes.cnpq.br/2777915645832000Mejía, Rodrigo Iván GoytiaUniversidade do Vale do Rio dos SinosPrograma de Pós-Graduação em Engenharia ElétricaUnisinosBrasilEscola PolitécnicaSíntese das técnicas de identificação de sistemas não lineares: estruturas de modelo de Hammerstein-Wiener e NARMAXACCNPQ::Engenharias::Engenharia ElétricaIdentificação de sistemasSistemas não linearesModelos não linearesNARMAX Hammerstein-WienerMLPRSSystem identificationNonlinear systemsNonlinear modelsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttp://www.repositorio.jesuita.org.br/handle/UNISINOS/5997info:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UNISINOS (RBDU Repositório Digital da Biblioteca da Unisinos)instname:Universidade do Vale do Rio dos Sinos (UNISINOS)instacron:UNISINOSORIGINALCassio Binkowski_.pdfCassio Binkowski_.pdfapplication/pdf1965327http://repositorio.jesuita.org.br/bitstream/UNISINOS/5997/1/Cassio+Binkowski_.pdf87b7380f1bab367237fb868e0de20388MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82175http://repositorio.jesuita.org.br/bitstream/UNISINOS/5997/2/license.txt320e21f23402402ac4988605e1edd177MD52UNISINOS/59972016-12-23 08:44:37.934oai:www.repositorio.jesuita.org.br:UNISINOS/5997Ck5PVEE6IENPTE9RVUUgQVFVSSBBIFNVQSBQUsOTUFJJQSBMSUNFTsOHQQoKRXN0YSBsaWNlbsOnYSBkZSBleGVtcGxvIMOpIGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxpY2Vuw6dhIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSwgdm9jw6ogKG8gYXV0b3IgKGVzKSBvdSBvIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGRlIGF1dG9yKSBjb25jZWRlIMOgIApVbml2ZXJzaWRhZGUgZG8gVmFsZSBkbyBSaW8gZG9zIFNpbm9zIChVTklTSU5PUykgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLDtG5pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdSAKZGlzc2VydGHDp8OjbyBwYXJhIGZpbnMgZGUgc2VndXJhbsOnYSwgYmFjay11cCBlIHByZXNlcnZhw6fDo28uCgpWb2PDqiBkZWNsYXJhIHF1ZSBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gw6kgb3JpZ2luYWwgZSBxdWUgdm9jw6ogdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IApjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6ogCmRlY2xhcmEgcXVlIG9idGV2ZSBhIHBlcm1pc3PDo28gaXJyZXN0cml0YSBkbyBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGFyYSBjb25jZWRlciDDoCBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbsOnYSwgZSBxdWUgZXNzZSBtYXRlcmlhbCBkZSBwcm9wcmllZGFkZSBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSAKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgCkFQT0lPIERFIFVNQSBBR8OKTkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTsODTyBTRUpBIEEgU0lHTEEgREUgClVOSVZFUlNJREFERSwgVk9Dw4ogREVDTEFSQSBRVUUgUkVTUEVJVE9VIFRPRE9TIEUgUVVBSVNRVUVSIERJUkVJVE9TIERFIFJFVklTw4NPIENPTU8gClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyAKY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KBiblioteca Digital de Teses e DissertaçõesPRIhttp://www.repositorio.jesuita.org.br/oai/requestmaicons@unisinos.br ||dspace@unisinos.bropendoar:2016-12-23T10:44:37Repositório Institucional da UNISINOS (RBDU Repositório Digital da Biblioteca da Unisinos) - Universidade do Vale do Rio dos Sinos (UNISINOS)false
dc.title.pt_BR.fl_str_mv Síntese das técnicas de identificação de sistemas não lineares: estruturas de modelo de Hammerstein-Wiener e NARMAX
title Síntese das técnicas de identificação de sistemas não lineares: estruturas de modelo de Hammerstein-Wiener e NARMAX
spellingShingle Síntese das técnicas de identificação de sistemas não lineares: estruturas de modelo de Hammerstein-Wiener e NARMAX
Binkowski, Cassio
ACCNPQ::Engenharias::Engenharia Elétrica
Identificação de sistemas
Sistemas não lineares
Modelos não lineares
NARMAX 
Hammerstein-Wiener
MLPRS
System identification
Nonlinear systems
Nonlinear models
title_short Síntese das técnicas de identificação de sistemas não lineares: estruturas de modelo de Hammerstein-Wiener e NARMAX
title_full Síntese das técnicas de identificação de sistemas não lineares: estruturas de modelo de Hammerstein-Wiener e NARMAX
title_fullStr Síntese das técnicas de identificação de sistemas não lineares: estruturas de modelo de Hammerstein-Wiener e NARMAX
title_full_unstemmed Síntese das técnicas de identificação de sistemas não lineares: estruturas de modelo de Hammerstein-Wiener e NARMAX
title_sort Síntese das técnicas de identificação de sistemas não lineares: estruturas de modelo de Hammerstein-Wiener e NARMAX
author Binkowski, Cassio
author_facet Binkowski, Cassio
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/9455664934951327
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/4302770186505370
dc.contributor.author.fl_str_mv Binkowski, Cassio
dc.contributor.advisor-co1.fl_str_mv Silva, Márcio Rosa da
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/2777915645832000
dc.contributor.advisor1.fl_str_mv Mejía, Rodrigo Iván Goytia
contributor_str_mv Silva, Márcio Rosa da
Mejía, Rodrigo Iván Goytia
dc.subject.cnpq.fl_str_mv ACCNPQ::Engenharias::Engenharia Elétrica
topic ACCNPQ::Engenharias::Engenharia Elétrica
Identificação de sistemas
Sistemas não lineares
Modelos não lineares
NARMAX 
Hammerstein-Wiener
MLPRS
System identification
Nonlinear systems
Nonlinear models
dc.subject.por.fl_str_mv Identificação de sistemas
Sistemas não lineares
Modelos não lineares
NARMAX 
dc.subject.eng.fl_str_mv Hammerstein-Wiener
MLPRS
System identification
Nonlinear systems
Nonlinear models
description A identificação de sistemas está longe de ser uma tarefa nova. Sendo inicialmente proposta na metade do século XX, foi extensamente desenvolvida para sistemas lineares, devido às exigências da época relacionadas à complexidade dos sistemas e também do poder computacional, atingindo excelente resultados. No entanto, com o aumento da complexidade dos sistemas e das exigências de controle, os modelos lineares não mais conseguiam representar os sistemas em toda a faixa de operação exigida, sendo assim requerendo uma aplicação dos modelos não-lineares. Visto que todos os sistemas presentes na natureza possuem certo grau de não linearidade, é correto afirmar que um modelo não-linear é capaz de representar as dinâmicas dos sistemas de forma mais compreensiva que um modelo linear. A identificação de sistemas não lineares foi então estudada e diversos modelos foram propostos, atingindo ótimos resultados. Nesse trabalho foi realizado um estudo de dois modelos não-lineares, NARMAX e Hammerstein-Wiener, aplicando esses modelos a dois processos simulados. Foram então derivados dois algoritmos para realizar a estimação dos parâmetros dos modelos NARMAX e Hammerstein-Wiener, utilizando um estimador ortogonal, e também um algoritmo para geração de sinais de entrada multinível. Os modelos foram então estimados para os sistemas simulados, e comparados utilizando os critérios AIC, FPE, Lipschitz e de correlação cruzada de alta ordem. Os melhores resultados foram obtidos com os modelos Hammerstein-Wiener-OLS e NARMAX-OLS, ao contrário do modelo NARMAX-RLS. No entanto, devido a resultados bastante divergentes entre os modelos, pode-se concluir que essa área ainda carece de desenvolvimento de técnicas precisas para comparação e avaliação de modelos, bem como quanto à quantificação do nível de não-linearidade do sistema em questão.
publishDate 2016
dc.date.accessioned.fl_str_mv 2016-12-23T10:42:59Z
dc.date.available.fl_str_mv 2016-12-23T10:42:59Z
dc.date.issued.fl_str_mv 2016-09-14
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.repositorio.jesuita.org.br/handle/UNISINOS/5997
url http://www.repositorio.jesuita.org.br/handle/UNISINOS/5997
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade do Vale do Rio dos Sinos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Elétrica
dc.publisher.initials.fl_str_mv Unisinos
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Escola Politécnica
publisher.none.fl_str_mv Universidade do Vale do Rio dos Sinos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNISINOS (RBDU Repositório Digital da Biblioteca da Unisinos)
instname:Universidade do Vale do Rio dos Sinos (UNISINOS)
instacron:UNISINOS
instname_str Universidade do Vale do Rio dos Sinos (UNISINOS)
instacron_str UNISINOS
institution UNISINOS
reponame_str Repositório Institucional da UNISINOS (RBDU Repositório Digital da Biblioteca da Unisinos)
collection Repositório Institucional da UNISINOS (RBDU Repositório Digital da Biblioteca da Unisinos)
bitstream.url.fl_str_mv http://repositorio.jesuita.org.br/bitstream/UNISINOS/5997/1/Cassio+Binkowski_.pdf
http://repositorio.jesuita.org.br/bitstream/UNISINOS/5997/2/license.txt
bitstream.checksum.fl_str_mv 87b7380f1bab367237fb868e0de20388
320e21f23402402ac4988605e1edd177
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UNISINOS (RBDU Repositório Digital da Biblioteca da Unisinos) - Universidade do Vale do Rio dos Sinos (UNISINOS)
repository.mail.fl_str_mv maicons@unisinos.br ||dspace@unisinos.br
_version_ 1853242061919092736