Avaliação e seleção de modelos em detecção não supervisionada de outliers
| Ano de defesa: | 2015 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.teses.usp.br/teses/disponiveis/55/55134/tde-26062015-101457/ |
Resumo: | A área de detecção de outliers (ou detecção de anomalias) possui um papel fundamental na descoberta de padrões em dados que podem ser considerados excepcionais sob alguma perspectiva. Uma importante distinção se dá entre as técnicas supervisionadas e não supervisionadas. O presente trabalho enfoca as técnicas de detecção não supervisionadas. Existem dezenas de algoritmos desta categoria na literatura, porém cada um deles utiliza uma intuição própria do que deve ser considerado um outlier ou não, que é naturalmente um conceito subjetivo. Isso dificulta sensivelmente a escolha de um algoritmo em particular e também a escolha de uma configuração adequada para o algoritmo escolhido em uma dada aplicação prática. Isso também torna altamente complexo avaliar a qualidade da solução obtida por um algoritmo/configuração em particular adotados pelo analista, especialmente em função da problemática de se definir uma medida de qualidade que não seja vinculada ao próprio critério utilizado pelo algoritmo. Tais questões estão inter-relacionadas e se referem respectivamente aos problemas de seleção de modelos e avaliação (ou validação) de resultados em aprendizado de máquina não supervisionado. Neste trabalho foi desenvolvido um índice pioneiro para avaliação não supervisionada de detecção de outliers. O índice, chamado IREOS (Internal, Relative Evaluation of Outlier Solutions), avalia e compara diferentes soluções (top-n, i.e., rotulações binárias) candidatas baseando-se apenas nas informações dos dados e nas próprias soluções a serem avaliadas. O índice também é ajustado estatisticamente para aleatoriedade e extensivamente avaliado em vários experimentos envolvendo diferentes coleções de bases de dados sintéticas e reais. |
| id |
USP_026529a093d576f47d6b4a6e4cfb8370 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-26062015-101457 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Avaliação e seleção de modelos em detecção não supervisionada de outliersOn the internal evaluation of unsupervised outlier detectionAvaliação não supervisionadaDetecção de outliersInternal evaluationModels selectionOutlier detectionSeleção de modelosValidaçãoValidationA área de detecção de outliers (ou detecção de anomalias) possui um papel fundamental na descoberta de padrões em dados que podem ser considerados excepcionais sob alguma perspectiva. Uma importante distinção se dá entre as técnicas supervisionadas e não supervisionadas. O presente trabalho enfoca as técnicas de detecção não supervisionadas. Existem dezenas de algoritmos desta categoria na literatura, porém cada um deles utiliza uma intuição própria do que deve ser considerado um outlier ou não, que é naturalmente um conceito subjetivo. Isso dificulta sensivelmente a escolha de um algoritmo em particular e também a escolha de uma configuração adequada para o algoritmo escolhido em uma dada aplicação prática. Isso também torna altamente complexo avaliar a qualidade da solução obtida por um algoritmo/configuração em particular adotados pelo analista, especialmente em função da problemática de se definir uma medida de qualidade que não seja vinculada ao próprio critério utilizado pelo algoritmo. Tais questões estão inter-relacionadas e se referem respectivamente aos problemas de seleção de modelos e avaliação (ou validação) de resultados em aprendizado de máquina não supervisionado. Neste trabalho foi desenvolvido um índice pioneiro para avaliação não supervisionada de detecção de outliers. O índice, chamado IREOS (Internal, Relative Evaluation of Outlier Solutions), avalia e compara diferentes soluções (top-n, i.e., rotulações binárias) candidatas baseando-se apenas nas informações dos dados e nas próprias soluções a serem avaliadas. O índice também é ajustado estatisticamente para aleatoriedade e extensivamente avaliado em vários experimentos envolvendo diferentes coleções de bases de dados sintéticas e reais.Outlier detection (or anomaly detection) plays an important role in the pattern discovery from data that can be considered exceptional in some sense. An important distinction is that between the supervised and unsupervised techniques. In this work we focus on unsupervised outlier detection techniques. There are dozens of algorithms of this category in literature, however, each of these algorithms uses its own intuition to judge what should be considered an outlier or not, which naturally is a subjective concept. This substantially complicates the selection of a particular algorithm and also the choice of an appropriate configuration of parameters for a given algorithm in a practical application. This also makes it highly complex to evaluate the quality of the solution obtained by an algorithm or configuration adopted by the analyst, especially in light of the problem of defining a measure of quality that is not hooked on the criterion used by the algorithm itself. These issues are interrelated and refer respectively to the problems of model selection and evaluation (or validation) of results in unsupervised learning. Here we developed a pioneer index for unsupervised evaluation of outlier detection results. The index, called IREOS (Internal, Relative Evaluation of Outlier Solutions), can evaluate and compare different candidate (top-n, i.e., binary labelings) solutions based only upon the data information and the solution to be evaluated. The index is also statistically adjusted for chance and extensively evaluated in several experiments involving different collections of synthetic and real data sets.Biblioteca Digitais de Teses e Dissertações da USPCampello, Ricardo José Gabrielli BarretoMarques, Henrique Oliveira2015-03-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-26062015-101457/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:57Zoai:teses.usp.br:tde-26062015-101457Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:57Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Avaliação e seleção de modelos em detecção não supervisionada de outliers On the internal evaluation of unsupervised outlier detection |
| title |
Avaliação e seleção de modelos em detecção não supervisionada de outliers |
| spellingShingle |
Avaliação e seleção de modelos em detecção não supervisionada de outliers Marques, Henrique Oliveira Avaliação não supervisionada Detecção de outliers Internal evaluation Models selection Outlier detection Seleção de modelos Validação Validation |
| title_short |
Avaliação e seleção de modelos em detecção não supervisionada de outliers |
| title_full |
Avaliação e seleção de modelos em detecção não supervisionada de outliers |
| title_fullStr |
Avaliação e seleção de modelos em detecção não supervisionada de outliers |
| title_full_unstemmed |
Avaliação e seleção de modelos em detecção não supervisionada de outliers |
| title_sort |
Avaliação e seleção de modelos em detecção não supervisionada de outliers |
| author |
Marques, Henrique Oliveira |
| author_facet |
Marques, Henrique Oliveira |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Campello, Ricardo José Gabrielli Barreto |
| dc.contributor.author.fl_str_mv |
Marques, Henrique Oliveira |
| dc.subject.por.fl_str_mv |
Avaliação não supervisionada Detecção de outliers Internal evaluation Models selection Outlier detection Seleção de modelos Validação Validation |
| topic |
Avaliação não supervisionada Detecção de outliers Internal evaluation Models selection Outlier detection Seleção de modelos Validação Validation |
| description |
A área de detecção de outliers (ou detecção de anomalias) possui um papel fundamental na descoberta de padrões em dados que podem ser considerados excepcionais sob alguma perspectiva. Uma importante distinção se dá entre as técnicas supervisionadas e não supervisionadas. O presente trabalho enfoca as técnicas de detecção não supervisionadas. Existem dezenas de algoritmos desta categoria na literatura, porém cada um deles utiliza uma intuição própria do que deve ser considerado um outlier ou não, que é naturalmente um conceito subjetivo. Isso dificulta sensivelmente a escolha de um algoritmo em particular e também a escolha de uma configuração adequada para o algoritmo escolhido em uma dada aplicação prática. Isso também torna altamente complexo avaliar a qualidade da solução obtida por um algoritmo/configuração em particular adotados pelo analista, especialmente em função da problemática de se definir uma medida de qualidade que não seja vinculada ao próprio critério utilizado pelo algoritmo. Tais questões estão inter-relacionadas e se referem respectivamente aos problemas de seleção de modelos e avaliação (ou validação) de resultados em aprendizado de máquina não supervisionado. Neste trabalho foi desenvolvido um índice pioneiro para avaliação não supervisionada de detecção de outliers. O índice, chamado IREOS (Internal, Relative Evaluation of Outlier Solutions), avalia e compara diferentes soluções (top-n, i.e., rotulações binárias) candidatas baseando-se apenas nas informações dos dados e nas próprias soluções a serem avaliadas. O índice também é ajustado estatisticamente para aleatoriedade e extensivamente avaliado em vários experimentos envolvendo diferentes coleções de bases de dados sintéticas e reais. |
| publishDate |
2015 |
| dc.date.none.fl_str_mv |
2015-03-23 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-26062015-101457/ |
| url |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-26062015-101457/ |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1815258495119785984 |