Resilient architecture to dynamically manage unmanned aerial vehicle networks under attack

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Ferrão, Isadora Garcia
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-23062021-125834/
Resumo: There is a growing demand for unmanned aerial vehicles (UAV) in the industry since they are being used on a large scale in various fields, such as health, security, military missions, agriculture, etc. These vehicles have the potential to increase productivity and savings. However, the increase in production and use of unmanned aerial vehicles requires improving sound decision-making principles, physical, computational security, and relevant technologies by the computing community. They must continually adapt to carry out missions where they face unpredictable problems. The increase in advanced functionality and the demand for computing capacity exposes these vehicles to different security vulnerabilities. These vulnerabilities are growing not only in number but also in sophistication. Researchers and companies have been developing multidisciplinary methodologies and approaches in recent years, trying to solve the most varied protection and safety problems around unmanned aerial vehicles. As in the past, concerns about unmanned aerial vehicles safety were with aggressors and hijackers, now with the domain of civilian application and insertion into the network, circumstances have changed. In this context, this dissertations objective was to advance state-of-the-art through the definition and development of a resilient architecture for unmanned aerial vehicles (STUART - reSilient archiTecture to dynamically manage Unmanned aeriAl vehicle networksundeR atTack) that dynamically manages the network, even when subjected to an attack during a mission, integrating safety and security methods. The architecture is composed of four parts: (1) Anomaly-based detection system, (2) Triage module, (3) Decision-making module, and (4) Resilience module. This dissertation also investigated the incorporation of safety and security as a unified concept in UAV development. The developed architecture was validated by applying specific techniques in each of the parts that compose the architecture. Three tests were performed: one with a real drone and two tests using computer simulation, composed of a base station and a UAV during a vaccine transport mission for COVID-19. The results allow us to conclude that STUART is effective in detecting GPS spoofing. Unlike other architectures found in the literature that focus on specific missions or vulnerabilities, STUART proposes an organizational structure of metrics aggregated for different contexts, ranging from vulnerability detection, filtering false positives, decision-making, and mitigation. Its efficiency has been proven through computational validation using real data from a drone.
id USP_02da2ba7073ed4487d924e6a49cebd5b
oai_identifier_str oai:teses.usp.br:tde-23062021-125834
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Resilient architecture to dynamically manage unmanned aerial vehicle networks under attackArquitetura resiliente para gerenciar dinamicamente redes de veículos aéreos não tripulados sob ataqueArquitetura ResilienteDecision makingProteçãoResilient architectureSafetySecuritySegurançaTomada de decisãoUnmanned aerial vehicleVeículo Aéreo Não TripuladoThere is a growing demand for unmanned aerial vehicles (UAV) in the industry since they are being used on a large scale in various fields, such as health, security, military missions, agriculture, etc. These vehicles have the potential to increase productivity and savings. However, the increase in production and use of unmanned aerial vehicles requires improving sound decision-making principles, physical, computational security, and relevant technologies by the computing community. They must continually adapt to carry out missions where they face unpredictable problems. The increase in advanced functionality and the demand for computing capacity exposes these vehicles to different security vulnerabilities. These vulnerabilities are growing not only in number but also in sophistication. Researchers and companies have been developing multidisciplinary methodologies and approaches in recent years, trying to solve the most varied protection and safety problems around unmanned aerial vehicles. As in the past, concerns about unmanned aerial vehicles safety were with aggressors and hijackers, now with the domain of civilian application and insertion into the network, circumstances have changed. In this context, this dissertations objective was to advance state-of-the-art through the definition and development of a resilient architecture for unmanned aerial vehicles (STUART - reSilient archiTecture to dynamically manage Unmanned aeriAl vehicle networksundeR atTack) that dynamically manages the network, even when subjected to an attack during a mission, integrating safety and security methods. The architecture is composed of four parts: (1) Anomaly-based detection system, (2) Triage module, (3) Decision-making module, and (4) Resilience module. This dissertation also investigated the incorporation of safety and security as a unified concept in UAV development. The developed architecture was validated by applying specific techniques in each of the parts that compose the architecture. Three tests were performed: one with a real drone and two tests using computer simulation, composed of a base station and a UAV during a vaccine transport mission for COVID-19. The results allow us to conclude that STUART is effective in detecting GPS spoofing. Unlike other architectures found in the literature that focus on specific missions or vulnerabilities, STUART proposes an organizational structure of metrics aggregated for different contexts, ranging from vulnerability detection, filtering false positives, decision-making, and mitigation. Its efficiency has been proven through computational validation using real data from a drone.Na indústria, há uma crescente demanda por veículos aéreos não tripulados, visto que, eles estão sendo usados em larga escala em vários campos, como saúde, segurança, missões militares, agricultura, etc. Esses veículos possuem potencial para aumentar a produtividade e a economia. No entanto, o aumento da produção e utilização desses veículos exigem o aprimoramento de princípios sólidos de tomada de decisão, segurança física, computacional e tecnologias relevantes pela comunidade de computação, pois eles devem continuamente se adaptar para realizar missões onde enfrentam problemas imprevisíveis. O aumento das funcionalidades avançadas e a demanda por capacidade computacional expõe esses veículos a diferentes vulnerabilidades de segurança. Essas vulnerabilidades estão crescendo não apenas em número, mas também em sofisticação. Como no passado as preocupações com a segurança dos VANTs estavam com agressores e sequestradores, agora com o domínio da aplicação civil e inserção na rede, as circunstâncias mudaram. Neste contexto, o objetivo desta dissertação foi avançar o estado da arte através da definição e desenvolvimento de uma arquitetura resiliente para veículos aéreos não tripulados (STUART - reSilient archiTecture to dynamically manage Unmanned aeriAl vehicle networksundeR atTack) que gerencie dinamicamente a rede, mesmo quando submetida a um ataque, integrando métodos de segurança computacional e física. A arquitetura é composta por quadro partes: (1) Sistema de detecção baseado em anomalias, (2) Módulo de triagem, (3) Módulo de tomada de decisão e (4) (5) Módulo de Resiliência. Esta dissertação também investigou a incorporação de segurança física e computacional como um conceito unificado no desenvolvimento de UAVs. A arquitetura desenvolvida foi validada aplicando técnicas específicas em cada uma das partes que compõem a arquitetura. Três testes foram realizados: um com um drone real e dois testes por meio de simulação computacional, compostas por uma estação base e um UAV durante uma missão de transporte de vacinas da COVID-19. Os resultados permitem concluir que a STUART é efetiva na detecção de GPS spoofing e diferentemente de outras arquiteturas encontradas na literatura que focam em missões ou vulnerabilidades específicas, a STUART propõe uma estrutura organizacional de métricas que podem ser agregadas para diferentes contextos e vão desde a detecção de vulnerabilidades, filtragem de falsos-positivos, até a tomada de decisão e mitigação. A sua eficiência foi comprovada através da validação computacional utilizando dados reais de um drone.Biblioteca Digitais de Teses e Dissertações da USPBranco, Kalinka Regina Lucas Jaquie CasteloFerrão, Isadora Garcia2021-06-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-23062021-125834/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-06-23T19:03:03Zoai:teses.usp.br:tde-23062021-125834Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-06-23T19:03:03Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Resilient architecture to dynamically manage unmanned aerial vehicle networks under attack
Arquitetura resiliente para gerenciar dinamicamente redes de veículos aéreos não tripulados sob ataque
title Resilient architecture to dynamically manage unmanned aerial vehicle networks under attack
spellingShingle Resilient architecture to dynamically manage unmanned aerial vehicle networks under attack
Ferrão, Isadora Garcia
Arquitetura Resiliente
Decision making
Proteção
Resilient architecture
Safety
Security
Segurança
Tomada de decisão
Unmanned aerial vehicle
Veículo Aéreo Não Tripulado
title_short Resilient architecture to dynamically manage unmanned aerial vehicle networks under attack
title_full Resilient architecture to dynamically manage unmanned aerial vehicle networks under attack
title_fullStr Resilient architecture to dynamically manage unmanned aerial vehicle networks under attack
title_full_unstemmed Resilient architecture to dynamically manage unmanned aerial vehicle networks under attack
title_sort Resilient architecture to dynamically manage unmanned aerial vehicle networks under attack
author Ferrão, Isadora Garcia
author_facet Ferrão, Isadora Garcia
author_role author
dc.contributor.none.fl_str_mv Branco, Kalinka Regina Lucas Jaquie Castelo
dc.contributor.author.fl_str_mv Ferrão, Isadora Garcia
dc.subject.por.fl_str_mv Arquitetura Resiliente
Decision making
Proteção
Resilient architecture
Safety
Security
Segurança
Tomada de decisão
Unmanned aerial vehicle
Veículo Aéreo Não Tripulado
topic Arquitetura Resiliente
Decision making
Proteção
Resilient architecture
Safety
Security
Segurança
Tomada de decisão
Unmanned aerial vehicle
Veículo Aéreo Não Tripulado
description There is a growing demand for unmanned aerial vehicles (UAV) in the industry since they are being used on a large scale in various fields, such as health, security, military missions, agriculture, etc. These vehicles have the potential to increase productivity and savings. However, the increase in production and use of unmanned aerial vehicles requires improving sound decision-making principles, physical, computational security, and relevant technologies by the computing community. They must continually adapt to carry out missions where they face unpredictable problems. The increase in advanced functionality and the demand for computing capacity exposes these vehicles to different security vulnerabilities. These vulnerabilities are growing not only in number but also in sophistication. Researchers and companies have been developing multidisciplinary methodologies and approaches in recent years, trying to solve the most varied protection and safety problems around unmanned aerial vehicles. As in the past, concerns about unmanned aerial vehicles safety were with aggressors and hijackers, now with the domain of civilian application and insertion into the network, circumstances have changed. In this context, this dissertations objective was to advance state-of-the-art through the definition and development of a resilient architecture for unmanned aerial vehicles (STUART - reSilient archiTecture to dynamically manage Unmanned aeriAl vehicle networksundeR atTack) that dynamically manages the network, even when subjected to an attack during a mission, integrating safety and security methods. The architecture is composed of four parts: (1) Anomaly-based detection system, (2) Triage module, (3) Decision-making module, and (4) Resilience module. This dissertation also investigated the incorporation of safety and security as a unified concept in UAV development. The developed architecture was validated by applying specific techniques in each of the parts that compose the architecture. Three tests were performed: one with a real drone and two tests using computer simulation, composed of a base station and a UAV during a vaccine transport mission for COVID-19. The results allow us to conclude that STUART is effective in detecting GPS spoofing. Unlike other architectures found in the literature that focus on specific missions or vulnerabilities, STUART proposes an organizational structure of metrics aggregated for different contexts, ranging from vulnerability detection, filtering false positives, decision-making, and mitigation. Its efficiency has been proven through computational validation using real data from a drone.
publishDate 2021
dc.date.none.fl_str_mv 2021-06-09
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/55/55134/tde-23062021-125834/
url https://www.teses.usp.br/teses/disponiveis/55/55134/tde-23062021-125834/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258470293700608