Spatial and temporal dynamics of taxonomic and functional diversity of microorganisms in the Southern Ocean with an emphasis on the carbon cycle
| Ano de defesa: | 2025 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/21/21134/tde-11082025-160812/ |
Resumo: | Microbial communities play a fundamental role in the biogeochemical cycles of the Southern Ocean. However, their diversity, structure, and functionality remain poorly understood, especially in the context of climate change. This study investigates how oceanographic conditions influence microbial communities (bacteria, archaea, and microeukaryotes) across different spatial and temporal scales in the northwestern Antarctic Peninsula. To achieve this, 162 seawater samples were collected from depths ranging from 5 to 1,525 meters at 10 monitoring stations (M01 to M10) along the Antarctic Peninsula (southern Drake Passage, Bransfield Strait, and Gerlache Strait). Sampling took place during research expeditions conducted between 2013 and 2019 (spring, summer, and late summer) aboard the vessel Almirante Maximiano, as part of the Brazilian Antarctic Program. The samples were analyzed using amplicon sequencing (primers 515Y/926R) and metagenomics. Taxonomic composition and functional potential of the pelagic microbial community were integrated with environmental variables, including temperature, salinity, fluorescence, and dissolved organic carbon concentration. Overall, prokaryotic diversity was higher than that of microeukaryotes. Interannual and seasonal analyses revealed that while prokaryotic communities remained relatively stable - possibly due to their metabolic diversity and high dispersal potential - microeukaryotes exhibited pronounced fluctuations driven by environmental factors. Among these, the reduction in sea surface temperature was particularly notable, likely linked to rising atmospheric temperatures and increased ice melt associated with extreme climate events, such as the 2016 El Niño. Assessment of the water column structure indicate that surface microbial communities - dominated by diatoms, Alphaproteobacteria, Bacteroidia, and Gammaproteobacteria - responded rapidly to short-term environmental changes, particularly temperature variations driven by phenomena like El Niño. In contrast, deep-water communities - primarily composed of archaea and bacteria from the Flavobacteriales and Pseudomonadales groups - were more stable, likely influenced by physical factors and biological interactions, such as nutrient competition. Mesopelagic communities did not exhibit a clear pattern: in some areas, they resembled surface communities, while in others, they were more similar to deep-sea communities. Integrated amplicon and metagenomic analyses from 2015 and 2016 highlighted taxonomic and metabolic differences between surface and deep-water communities. While surface communities - rich in diatoms, Polaribacter, Rhodobacteraceae, and Sulfitobacter - responded to seasonal phytoplankton activity, deep-water communities - dominated by SAR11, Thioglobaceae, and Nitrosopumilaceae - played a key role in long-term carbon remineralization. These findings underscore the importance of microbial processes in regulating the carbon cycle and suggest potential impacts of climate change on microbial community functionality. Understanding these spatial and temporal patterns is crucial for predicting future changes in polar marine ecosystems, developing biodiversity conservation strategies, and implementing measures to mitigate the effects of climate change in the Southern Ocean |
| id |
USP_03e677ed92c2b9dfdf17adeb53847b57 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-11082025-160812 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Spatial and temporal dynamics of taxonomic and functional diversity of microorganisms in the Southern Ocean with an emphasis on the carbon cycleDinâmica espacial e temporal da diversidade taxonômica e funcional de microrganismos no Oceano Austral com ênfase no ciclo do carbonoMetabarcodingAntarcticaAntárticaBiological Carbon PumpBomba Biológica de CarbonoDinâmica Microbiana MultidomíniosMetabarcodingMetagenômicaMetagenomicsMicrobial OceanographyMicrobiologia PolarMultidomain Microbial DynamicsOceanografia MicrobianaPolar MicrobiologyMicrobial communities play a fundamental role in the biogeochemical cycles of the Southern Ocean. However, their diversity, structure, and functionality remain poorly understood, especially in the context of climate change. This study investigates how oceanographic conditions influence microbial communities (bacteria, archaea, and microeukaryotes) across different spatial and temporal scales in the northwestern Antarctic Peninsula. To achieve this, 162 seawater samples were collected from depths ranging from 5 to 1,525 meters at 10 monitoring stations (M01 to M10) along the Antarctic Peninsula (southern Drake Passage, Bransfield Strait, and Gerlache Strait). Sampling took place during research expeditions conducted between 2013 and 2019 (spring, summer, and late summer) aboard the vessel Almirante Maximiano, as part of the Brazilian Antarctic Program. The samples were analyzed using amplicon sequencing (primers 515Y/926R) and metagenomics. Taxonomic composition and functional potential of the pelagic microbial community were integrated with environmental variables, including temperature, salinity, fluorescence, and dissolved organic carbon concentration. Overall, prokaryotic diversity was higher than that of microeukaryotes. Interannual and seasonal analyses revealed that while prokaryotic communities remained relatively stable - possibly due to their metabolic diversity and high dispersal potential - microeukaryotes exhibited pronounced fluctuations driven by environmental factors. Among these, the reduction in sea surface temperature was particularly notable, likely linked to rising atmospheric temperatures and increased ice melt associated with extreme climate events, such as the 2016 El Niño. Assessment of the water column structure indicate that surface microbial communities - dominated by diatoms, Alphaproteobacteria, Bacteroidia, and Gammaproteobacteria - responded rapidly to short-term environmental changes, particularly temperature variations driven by phenomena like El Niño. In contrast, deep-water communities - primarily composed of archaea and bacteria from the Flavobacteriales and Pseudomonadales groups - were more stable, likely influenced by physical factors and biological interactions, such as nutrient competition. Mesopelagic communities did not exhibit a clear pattern: in some areas, they resembled surface communities, while in others, they were more similar to deep-sea communities. Integrated amplicon and metagenomic analyses from 2015 and 2016 highlighted taxonomic and metabolic differences between surface and deep-water communities. While surface communities - rich in diatoms, Polaribacter, Rhodobacteraceae, and Sulfitobacter - responded to seasonal phytoplankton activity, deep-water communities - dominated by SAR11, Thioglobaceae, and Nitrosopumilaceae - played a key role in long-term carbon remineralization. These findings underscore the importance of microbial processes in regulating the carbon cycle and suggest potential impacts of climate change on microbial community functionality. Understanding these spatial and temporal patterns is crucial for predicting future changes in polar marine ecosystems, developing biodiversity conservation strategies, and implementing measures to mitigate the effects of climate change in the Southern OceanAs comunidades microbianas desempenham um papel fundamental nos ciclos biogeoquímicos do Oceano Austral. No entanto, sua diversidade, estrutura e funcionalidade ainda são pouco compreendidas, especialmente diante das mudanças climáticas. Este estudo investiga como as condições oceanográficas influenciam as comunidades microbianas (bactérias, arqueias e microeucariontes) em diferentes escalas espaciais e temporais na Península Antártica Noroeste. Para isso, foram coletadas 162 amostras de água do mar em profundidades entre 5 e 1.525 m, distribuídas em 10 estações de monitoramento (M01 a M10) ao longo da Península Antártica (Drake Sul, Estreitos de Bransfield e Gerlache), durante as campanhas realizadas entre 2013 e 2019 (primavera, verão e final de verão), a bordo do navio Almirante Maximiano, no âmbito do Programa Antártico Brasileiro. As amostras foram analisadas por meio de sequenciamento de amplicons (primers 515Y/926R) e metagenômica. Os dados de composição taxonômica e potencial funcional da comunidade microbiana pelágica foram integrados a variáveis ambientais, como temperatura, salinidade, fluorescência e concentração de carbono orgânico dissolvido. De modo geral, a diversidade de procariotos foi maior do que a de microeucariontes. As análises interanuais e sazonais revelaram que, enquanto as comunidades procarióticas permaneceram relativamente estáveis - possivelmente devido à sua diversidade metabólica e ao alto potencial de dispersão -, os microeucariontes apresentaram flutuações acentuadas, impulsionadas por fatores ambientais. Entre eles, destacam-se a redução da temperatura da superfície do mar, provavelmente resultante do aumento da temperatura atmosférica e do consequente maior degelo associado a eventos climáticos extremos, como o El Niño de 2016. A análise vertical mostrou que as comunidades microbianas de superfície - dominadas por diatomáceas, Alphaproteobacteria, Bacteroidia e Gammaproteobacteria - responderam rapidamente a mudanças ambientais de curto prazo, especialmente variações térmicas impulsionadas por fenômenos como o El Niño. Já as comunidades de águas profundas - compostas predominantemente por arqueias e bactérias dos grupos Flavobacteriales e Pseudomonadales - mostraram-se mais estáveis, influenciadas provavelmente por fatores físicos e interações biológicas, como a competição por nutrientes. As comunidades mesopelágicas, por sua vez, não apresentaram um padrão claro: em algumas áreas, assemelharam-se às comunidades de superfície; em outras, às comunidades de fundo. As análises integradas de amplicons e metagenômica realizadas nos anos de 2015 e 2016 destacaram diferenças taxonômicas e metabólicas entre as comunidades de superfície e de águas profundas. Enquanto as comunidades superficiais - ricas em diatomáceas, Polaribacter, Rhodobacteraceae e Sulfitobacter - responderam à atividade sazonal do fitoplâncton, as comunidades de fundo - dominadas por SAR11, Thioglobaceae e Nitrosopumilaceae - desempenharam um papel essencial na remineralização de carbono a longo prazo. Esses resultados ressaltam a importância dos processos microbianos na regulação do ciclo do carbono e indicam potenciais impactos das mudanças climáticas na funcionalidade dessas comunidades. Compreender esses padrões espaciais e temporais é essencial para prever futuras alterações nos ecossistemas marinhos polares e para desenvolver estratégias de conservação da biodiversidade, além de medidas para mitigar os impactos das mudanças climáticas no Oceano Austral.Biblioteca Digitais de Teses e Dissertações da USPSignori, Camila NegrãoFaria, Laiza Cabral de2025-04-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/21/21134/tde-11082025-160812/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-10-06T13:11:27Zoai:teses.usp.br:tde-11082025-160812Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-10-06T13:11:27Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Spatial and temporal dynamics of taxonomic and functional diversity of microorganisms in the Southern Ocean with an emphasis on the carbon cycle Dinâmica espacial e temporal da diversidade taxonômica e funcional de microrganismos no Oceano Austral com ênfase no ciclo do carbono |
| title |
Spatial and temporal dynamics of taxonomic and functional diversity of microorganisms in the Southern Ocean with an emphasis on the carbon cycle |
| spellingShingle |
Spatial and temporal dynamics of taxonomic and functional diversity of microorganisms in the Southern Ocean with an emphasis on the carbon cycle Faria, Laiza Cabral de Metabarcoding Antarctica Antártica Biological Carbon Pump Bomba Biológica de Carbono Dinâmica Microbiana Multidomínios Metabarcoding Metagenômica Metagenomics Microbial Oceanography Microbiologia Polar Multidomain Microbial Dynamics Oceanografia Microbiana Polar Microbiology |
| title_short |
Spatial and temporal dynamics of taxonomic and functional diversity of microorganisms in the Southern Ocean with an emphasis on the carbon cycle |
| title_full |
Spatial and temporal dynamics of taxonomic and functional diversity of microorganisms in the Southern Ocean with an emphasis on the carbon cycle |
| title_fullStr |
Spatial and temporal dynamics of taxonomic and functional diversity of microorganisms in the Southern Ocean with an emphasis on the carbon cycle |
| title_full_unstemmed |
Spatial and temporal dynamics of taxonomic and functional diversity of microorganisms in the Southern Ocean with an emphasis on the carbon cycle |
| title_sort |
Spatial and temporal dynamics of taxonomic and functional diversity of microorganisms in the Southern Ocean with an emphasis on the carbon cycle |
| author |
Faria, Laiza Cabral de |
| author_facet |
Faria, Laiza Cabral de |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Signori, Camila Negrão |
| dc.contributor.author.fl_str_mv |
Faria, Laiza Cabral de |
| dc.subject.por.fl_str_mv |
Metabarcoding Antarctica Antártica Biological Carbon Pump Bomba Biológica de Carbono Dinâmica Microbiana Multidomínios Metabarcoding Metagenômica Metagenomics Microbial Oceanography Microbiologia Polar Multidomain Microbial Dynamics Oceanografia Microbiana Polar Microbiology |
| topic |
Metabarcoding Antarctica Antártica Biological Carbon Pump Bomba Biológica de Carbono Dinâmica Microbiana Multidomínios Metabarcoding Metagenômica Metagenomics Microbial Oceanography Microbiologia Polar Multidomain Microbial Dynamics Oceanografia Microbiana Polar Microbiology |
| description |
Microbial communities play a fundamental role in the biogeochemical cycles of the Southern Ocean. However, their diversity, structure, and functionality remain poorly understood, especially in the context of climate change. This study investigates how oceanographic conditions influence microbial communities (bacteria, archaea, and microeukaryotes) across different spatial and temporal scales in the northwestern Antarctic Peninsula. To achieve this, 162 seawater samples were collected from depths ranging from 5 to 1,525 meters at 10 monitoring stations (M01 to M10) along the Antarctic Peninsula (southern Drake Passage, Bransfield Strait, and Gerlache Strait). Sampling took place during research expeditions conducted between 2013 and 2019 (spring, summer, and late summer) aboard the vessel Almirante Maximiano, as part of the Brazilian Antarctic Program. The samples were analyzed using amplicon sequencing (primers 515Y/926R) and metagenomics. Taxonomic composition and functional potential of the pelagic microbial community were integrated with environmental variables, including temperature, salinity, fluorescence, and dissolved organic carbon concentration. Overall, prokaryotic diversity was higher than that of microeukaryotes. Interannual and seasonal analyses revealed that while prokaryotic communities remained relatively stable - possibly due to their metabolic diversity and high dispersal potential - microeukaryotes exhibited pronounced fluctuations driven by environmental factors. Among these, the reduction in sea surface temperature was particularly notable, likely linked to rising atmospheric temperatures and increased ice melt associated with extreme climate events, such as the 2016 El Niño. Assessment of the water column structure indicate that surface microbial communities - dominated by diatoms, Alphaproteobacteria, Bacteroidia, and Gammaproteobacteria - responded rapidly to short-term environmental changes, particularly temperature variations driven by phenomena like El Niño. In contrast, deep-water communities - primarily composed of archaea and bacteria from the Flavobacteriales and Pseudomonadales groups - were more stable, likely influenced by physical factors and biological interactions, such as nutrient competition. Mesopelagic communities did not exhibit a clear pattern: in some areas, they resembled surface communities, while in others, they were more similar to deep-sea communities. Integrated amplicon and metagenomic analyses from 2015 and 2016 highlighted taxonomic and metabolic differences between surface and deep-water communities. While surface communities - rich in diatoms, Polaribacter, Rhodobacteraceae, and Sulfitobacter - responded to seasonal phytoplankton activity, deep-water communities - dominated by SAR11, Thioglobaceae, and Nitrosopumilaceae - played a key role in long-term carbon remineralization. These findings underscore the importance of microbial processes in regulating the carbon cycle and suggest potential impacts of climate change on microbial community functionality. Understanding these spatial and temporal patterns is crucial for predicting future changes in polar marine ecosystems, developing biodiversity conservation strategies, and implementing measures to mitigate the effects of climate change in the Southern Ocean |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-04-29 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/21/21134/tde-11082025-160812/ |
| url |
https://www.teses.usp.br/teses/disponiveis/21/21134/tde-11082025-160812/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1848370473017016320 |