Fibrados de discos sobre superfícies uniformizados pelo bidisco hiperbólico

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Costa, Sidnei Furtado
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-16112017-114801/
Resumo: Generalizando para o caso do bidisco hiperbólico as construções em (ANANIN; GROSSI; GUSEVISKII, 2011) e em (GROSSI, 2015), provamos que o fibrado trivial (tangente) sobre superfícies de gênero ≥ 1 (≥ 2) admite geometria modelada no bidisco hiperbólico. (O caso do fibrado trivial sobre o toro é particularmente curioso, pois a curvatura é nula na base e em cada fibra, mas não no fibrado.) Além do seu próprio valor intrínseco, estes exemplos se inserem no contexto da conjectura de Gromov, Lawson e Thurston. Originalmente, a conjectura de Gromov, Lawson e Thurston diz que um fibrado de discos sobre uma superfície conexa fechada orientável de gênero ≥ 2 admite métrica hiperbólica completa de curvatura constante se e só se ΙeΙ ≤ Ι XΙ, onde e é o número de Euler do fibrado e X é a caraterística de Euler da base. Posteriomente, observou-se que esta desigualdade também era válida em todos os fibrados de discos sobre superfícies com estrutura hiperbólica complexa (i.e., uniformizados pela 2-bola holomorfa) conhecidos. Por esta razão, passou-se a acreditar que a conjectura depende apenas de curvatura negativa lato sensu (digamos, à la Alexandrov) e não das especificidades de uma geometria hiperbólica particular. O bidisco hiperbólico é o caso mais simples que nos permite testar tal hipótese, pois está no limite de ser hiperbólico (a curvatura é ≤ 0). Construímos os dois casos extremais: = 0 (fibrado trivial) e ΙeΙ = ΙXΙ (fibrado tangente). Além disso, provamos alguns resultados relacionados à teoria de Teichmüller no contexto de fibrados de discos uniformizados pelo bidisco hiperbólico.
id USP_04ca08e555587a073fb6fe57c69e9cc5
oai_identifier_str oai:teses.usp.br:tde-16112017-114801
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Fibrados de discos sobre superfícies uniformizados pelo bidisco hiperbólicoDisc bundles over surfaces uniformized by the hyperbolic bidiscDisc bundles over surfacesEstruturas geométricas em variedadesFibrados de disco sobre superfícieGeometric structures on manifoldsHyperbolic bidiscOriginal: bidisco hiperbólicoPoincaré's polyhedron theoremTeorema poliedral de PoincaréGeneralizando para o caso do bidisco hiperbólico as construções em (ANANIN; GROSSI; GUSEVISKII, 2011) e em (GROSSI, 2015), provamos que o fibrado trivial (tangente) sobre superfícies de gênero ≥ 1 (≥ 2) admite geometria modelada no bidisco hiperbólico. (O caso do fibrado trivial sobre o toro é particularmente curioso, pois a curvatura é nula na base e em cada fibra, mas não no fibrado.) Além do seu próprio valor intrínseco, estes exemplos se inserem no contexto da conjectura de Gromov, Lawson e Thurston. Originalmente, a conjectura de Gromov, Lawson e Thurston diz que um fibrado de discos sobre uma superfície conexa fechada orientável de gênero ≥ 2 admite métrica hiperbólica completa de curvatura constante se e só se ΙeΙ ≤ Ι XΙ, onde e é o número de Euler do fibrado e X é a caraterística de Euler da base. Posteriomente, observou-se que esta desigualdade também era válida em todos os fibrados de discos sobre superfícies com estrutura hiperbólica complexa (i.e., uniformizados pela 2-bola holomorfa) conhecidos. Por esta razão, passou-se a acreditar que a conjectura depende apenas de curvatura negativa lato sensu (digamos, à la Alexandrov) e não das especificidades de uma geometria hiperbólica particular. O bidisco hiperbólico é o caso mais simples que nos permite testar tal hipótese, pois está no limite de ser hiperbólico (a curvatura é ≤ 0). Construímos os dois casos extremais: = 0 (fibrado trivial) e ΙeΙ = ΙXΙ (fibrado tangente). Além disso, provamos alguns resultados relacionados à teoria de Teichmüller no contexto de fibrados de discos uniformizados pelo bidisco hiperbólico.Generalizing the constructions in (ANANIN; GROSSI; GUSEVISKII, 2011) and in (GROSSI, 2015) to the hyperbolic bidisc, we show that the trivial (tangent) bundle over genus ≥ 1 (≥ 2) surfaces admits a geometric structure modelled on the hyperbolic bidisc. (The case of the trivial bundle over the torus is particularly interesting because the curvature vanishes on the base and on every fiber, but is non-null on the bundle.) Aside from their intrinsic value, these examples also play a role in the context of the Gromov, Lawson and Thurston conjecture (GLT conjecture). Originally, the GLT conjecture states that a disc bundle over a connected oriented closed surface of genus ≥ 2 admits a complete hyperbolic metric of constant curvature if and only if ΙeΙ ≤ ΙXΙ, where stands for the Euler number of the bundle and , for the Euler characteristic of the base. Afterwards, it was observed that this inequality also holds for every known example of disc bundles over surfaces equipped with complex hyperbolic structure (i.e., uniformized by the holomoprhic 2-ball). So, one started to believe that the conjecture depends only on negative curvature lato sensu (say, à la Alexandrov) and not on the particularities of an specific hyperbolic geometry. The hyperbolic bidisc is the simplest case allowing us to test such hypothesis since it lies on the frontier of being hyperbolic (curvature is ≥ 0). We construct the two extremal cases: e = 0 (trivial bundle) and ΙeΙ = ΙXΙ (tangent bundle). We also prove a few results related to Teichmüllers theory in the context of disc bundles uniformized by the hyperbolic bidisc.Biblioteca Digitais de Teses e Dissertações da USPFerreira, Carlos Henrique GrossiCosta, Sidnei Furtado2017-06-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55135/tde-16112017-114801/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-07-17T16:38:18Zoai:teses.usp.br:tde-16112017-114801Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-17T16:38:18Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Fibrados de discos sobre superfícies uniformizados pelo bidisco hiperbólico
Disc bundles over surfaces uniformized by the hyperbolic bidisc
title Fibrados de discos sobre superfícies uniformizados pelo bidisco hiperbólico
spellingShingle Fibrados de discos sobre superfícies uniformizados pelo bidisco hiperbólico
Costa, Sidnei Furtado
Disc bundles over surfaces
Estruturas geométricas em variedades
Fibrados de disco sobre superfície
Geometric structures on manifolds
Hyperbolic bidisc
Original: bidisco hiperbólico
Poincaré's polyhedron theorem
Teorema poliedral de Poincaré
title_short Fibrados de discos sobre superfícies uniformizados pelo bidisco hiperbólico
title_full Fibrados de discos sobre superfícies uniformizados pelo bidisco hiperbólico
title_fullStr Fibrados de discos sobre superfícies uniformizados pelo bidisco hiperbólico
title_full_unstemmed Fibrados de discos sobre superfícies uniformizados pelo bidisco hiperbólico
title_sort Fibrados de discos sobre superfícies uniformizados pelo bidisco hiperbólico
author Costa, Sidnei Furtado
author_facet Costa, Sidnei Furtado
author_role author
dc.contributor.none.fl_str_mv Ferreira, Carlos Henrique Grossi
dc.contributor.author.fl_str_mv Costa, Sidnei Furtado
dc.subject.por.fl_str_mv Disc bundles over surfaces
Estruturas geométricas em variedades
Fibrados de disco sobre superfície
Geometric structures on manifolds
Hyperbolic bidisc
Original: bidisco hiperbólico
Poincaré's polyhedron theorem
Teorema poliedral de Poincaré
topic Disc bundles over surfaces
Estruturas geométricas em variedades
Fibrados de disco sobre superfície
Geometric structures on manifolds
Hyperbolic bidisc
Original: bidisco hiperbólico
Poincaré's polyhedron theorem
Teorema poliedral de Poincaré
description Generalizando para o caso do bidisco hiperbólico as construções em (ANANIN; GROSSI; GUSEVISKII, 2011) e em (GROSSI, 2015), provamos que o fibrado trivial (tangente) sobre superfícies de gênero ≥ 1 (≥ 2) admite geometria modelada no bidisco hiperbólico. (O caso do fibrado trivial sobre o toro é particularmente curioso, pois a curvatura é nula na base e em cada fibra, mas não no fibrado.) Além do seu próprio valor intrínseco, estes exemplos se inserem no contexto da conjectura de Gromov, Lawson e Thurston. Originalmente, a conjectura de Gromov, Lawson e Thurston diz que um fibrado de discos sobre uma superfície conexa fechada orientável de gênero ≥ 2 admite métrica hiperbólica completa de curvatura constante se e só se ΙeΙ ≤ Ι XΙ, onde e é o número de Euler do fibrado e X é a caraterística de Euler da base. Posteriomente, observou-se que esta desigualdade também era válida em todos os fibrados de discos sobre superfícies com estrutura hiperbólica complexa (i.e., uniformizados pela 2-bola holomorfa) conhecidos. Por esta razão, passou-se a acreditar que a conjectura depende apenas de curvatura negativa lato sensu (digamos, à la Alexandrov) e não das especificidades de uma geometria hiperbólica particular. O bidisco hiperbólico é o caso mais simples que nos permite testar tal hipótese, pois está no limite de ser hiperbólico (a curvatura é ≤ 0). Construímos os dois casos extremais: = 0 (fibrado trivial) e ΙeΙ = ΙXΙ (fibrado tangente). Além disso, provamos alguns resultados relacionados à teoria de Teichmüller no contexto de fibrados de discos uniformizados pelo bidisco hiperbólico.
publishDate 2017
dc.date.none.fl_str_mv 2017-06-27
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55135/tde-16112017-114801/
url http://www.teses.usp.br/teses/disponiveis/55/55135/tde-16112017-114801/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258229046771712