Avaliação de critérios de desempenho de controladores preditivos.

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Barros, Rafael Lopes Duarte
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/3/3137/tde-31072013-003811/
Resumo: O atual ambiente de alta competitividade do Mercado tem levado os produtores a operar com margens de lucro cada vez mais restritas. Nesse sentido, é imperativa a racionalização dos custos de produção, bem como a otimização dos processos produtivos. Diante de tal cenário, o controle preditivo baseado em modelos tem sido apresentado como uma poderosa alternativa para a obtenção dos objetivos acima mencionados. Sendo assim, é essencial que seja estabelecida uma metodologia de análise, baseada em critérios claros, acompanháveis e mensuráveis. Atualmente, encontram-se disponíveis no mercado distintas metodologias e suas respectivas ferramentas de suporte, as quais auxiliam na realização de tais análises. Quando se observa o número de soluções de controle avançado disponíveis, juntamente com as metodologias e ferramentas de análise de desempenho disponíveis, nota-se que existe um amplo espectro de possíveis combinações a ser avaliado. O objetivo desse trabalho é estudar algumas dessas combinações. São aqui avaliados o desempenho de controladores preditivos, à luz de algumas das consagradas técnicas de avaliação, bem como a própria efetividade e aplicabilidade de tais técnicas. São utilizados e analisados os seguintes controles avançados: Controlador Preditivo Generalizado (GPC); Controlador Multivariável Robusto; e Controlador ESSMPC. Para a avaliação de desempenho, serão utilizadas e estudadas as seguintes técnicas: Controller Performance Index (CPI); Cp e Cpk; e Índice de Yu e Qin. Os resultados mostraram que o Controlador Robusto Multivariável apresentou desempenho similar ao ESSMPC e ambos apresentaram desempenho melhor que o GPC. Todos os algoritmos apresentaram maior sensibilidade às mudanças nos pesos das variáveis controladas e menor nos pesos das manipuladas. No caso da inserção de erros, os algoritmos apresentam sensibilidade maior até 35% de erro. Após tal valor, a diferença de desempenho não é tão significativa. Além disso, o Cp, Cpk e Índice de Yu e Qin se comportaram de forma similar, mas diferentes do CPI.
id USP_0513477be5afa88cecb9beaf5c5c2542
oai_identifier_str oai:teses.usp.br:tde-31072013-003811
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Avaliação de critérios de desempenho de controladores preditivos.Evaluation of predictive control performance criteria.Avaliação de desempenhoControle preditivoPerformance assessmentPredictive controlO atual ambiente de alta competitividade do Mercado tem levado os produtores a operar com margens de lucro cada vez mais restritas. Nesse sentido, é imperativa a racionalização dos custos de produção, bem como a otimização dos processos produtivos. Diante de tal cenário, o controle preditivo baseado em modelos tem sido apresentado como uma poderosa alternativa para a obtenção dos objetivos acima mencionados. Sendo assim, é essencial que seja estabelecida uma metodologia de análise, baseada em critérios claros, acompanháveis e mensuráveis. Atualmente, encontram-se disponíveis no mercado distintas metodologias e suas respectivas ferramentas de suporte, as quais auxiliam na realização de tais análises. Quando se observa o número de soluções de controle avançado disponíveis, juntamente com as metodologias e ferramentas de análise de desempenho disponíveis, nota-se que existe um amplo espectro de possíveis combinações a ser avaliado. O objetivo desse trabalho é estudar algumas dessas combinações. São aqui avaliados o desempenho de controladores preditivos, à luz de algumas das consagradas técnicas de avaliação, bem como a própria efetividade e aplicabilidade de tais técnicas. São utilizados e analisados os seguintes controles avançados: Controlador Preditivo Generalizado (GPC); Controlador Multivariável Robusto; e Controlador ESSMPC. Para a avaliação de desempenho, serão utilizadas e estudadas as seguintes técnicas: Controller Performance Index (CPI); Cp e Cpk; e Índice de Yu e Qin. Os resultados mostraram que o Controlador Robusto Multivariável apresentou desempenho similar ao ESSMPC e ambos apresentaram desempenho melhor que o GPC. Todos os algoritmos apresentaram maior sensibilidade às mudanças nos pesos das variáveis controladas e menor nos pesos das manipuladas. No caso da inserção de erros, os algoritmos apresentam sensibilidade maior até 35% de erro. Após tal valor, a diferença de desempenho não é tão significativa. Além disso, o Cp, Cpk e Índice de Yu e Qin se comportaram de forma similar, mas diferentes do CPI.The current environment of high competitiveness of the market has led producers to operate with profit margins increasingly restricted. Therefore, it is imperative to streamlining production costs, as well as the optimization of production processes. Faced with this scenario, the model predictive control has been presented as a powerful alternative for obtaining the objectives stated above. Therefore, it is essential to establish a methodology of analysis, based on clear and measurable criteria. Currently, there are different methods and support tools available in the Market which help in such analysis. These methodologies and tools may evaluate the problem only quantitatively (increased production of a particular unit, for example) or qualitatively (how close to the predictions of advanced control solution is the actual behavior of the plant, for example). When one observes the number of advanced control solutions available, along with methodologies and tools available for performance analysis, we note that there is a wide spectrum of possible combinations to be evaluated. The aim of this work is to study some of these combinations. It will be observed the performance of advanced control solutions, through some of the most famous evaluation techniques, as well as their own effectiveness and applicability of such techniques. For the execution of the work will be used and analyzed the following advanced control solutions: Generalized Predictive Controller (GPC); Robust Multivariable Controller; and Controller ESSMPC. For the performance assessment, it will be used and studied the following techniques: Controller Performance Index; Cp and Cpk; and Qin and Yu Index. The results showed that the Robust Multivariable Controller performance was similar to ESSMPC and both performed better than the GPC. All algorithms showed greater sensitivity to changes in the weights of the controlled variables than on weights for manipulated variables. In the case of error insertion, the algorithms exhibit greater sensitivity up to 35% of mismatch. After this value, the performance difference was not very significant. Moreover, the Cp index Cpk and Qin and Yu behaved similar but different than CPI.Biblioteca Digitais de Teses e Dissertações da USPPark, Song WonBarros, Rafael Lopes Duarte2013-02-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/3/3137/tde-31072013-003811/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:36Zoai:teses.usp.br:tde-31072013-003811Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:36Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Avaliação de critérios de desempenho de controladores preditivos.
Evaluation of predictive control performance criteria.
title Avaliação de critérios de desempenho de controladores preditivos.
spellingShingle Avaliação de critérios de desempenho de controladores preditivos.
Barros, Rafael Lopes Duarte
Avaliação de desempenho
Controle preditivo
Performance assessment
Predictive control
title_short Avaliação de critérios de desempenho de controladores preditivos.
title_full Avaliação de critérios de desempenho de controladores preditivos.
title_fullStr Avaliação de critérios de desempenho de controladores preditivos.
title_full_unstemmed Avaliação de critérios de desempenho de controladores preditivos.
title_sort Avaliação de critérios de desempenho de controladores preditivos.
author Barros, Rafael Lopes Duarte
author_facet Barros, Rafael Lopes Duarte
author_role author
dc.contributor.none.fl_str_mv Park, Song Won
dc.contributor.author.fl_str_mv Barros, Rafael Lopes Duarte
dc.subject.por.fl_str_mv Avaliação de desempenho
Controle preditivo
Performance assessment
Predictive control
topic Avaliação de desempenho
Controle preditivo
Performance assessment
Predictive control
description O atual ambiente de alta competitividade do Mercado tem levado os produtores a operar com margens de lucro cada vez mais restritas. Nesse sentido, é imperativa a racionalização dos custos de produção, bem como a otimização dos processos produtivos. Diante de tal cenário, o controle preditivo baseado em modelos tem sido apresentado como uma poderosa alternativa para a obtenção dos objetivos acima mencionados. Sendo assim, é essencial que seja estabelecida uma metodologia de análise, baseada em critérios claros, acompanháveis e mensuráveis. Atualmente, encontram-se disponíveis no mercado distintas metodologias e suas respectivas ferramentas de suporte, as quais auxiliam na realização de tais análises. Quando se observa o número de soluções de controle avançado disponíveis, juntamente com as metodologias e ferramentas de análise de desempenho disponíveis, nota-se que existe um amplo espectro de possíveis combinações a ser avaliado. O objetivo desse trabalho é estudar algumas dessas combinações. São aqui avaliados o desempenho de controladores preditivos, à luz de algumas das consagradas técnicas de avaliação, bem como a própria efetividade e aplicabilidade de tais técnicas. São utilizados e analisados os seguintes controles avançados: Controlador Preditivo Generalizado (GPC); Controlador Multivariável Robusto; e Controlador ESSMPC. Para a avaliação de desempenho, serão utilizadas e estudadas as seguintes técnicas: Controller Performance Index (CPI); Cp e Cpk; e Índice de Yu e Qin. Os resultados mostraram que o Controlador Robusto Multivariável apresentou desempenho similar ao ESSMPC e ambos apresentaram desempenho melhor que o GPC. Todos os algoritmos apresentaram maior sensibilidade às mudanças nos pesos das variáveis controladas e menor nos pesos das manipuladas. No caso da inserção de erros, os algoritmos apresentam sensibilidade maior até 35% de erro. Após tal valor, a diferença de desempenho não é tão significativa. Além disso, o Cp, Cpk e Índice de Yu e Qin se comportaram de forma similar, mas diferentes do CPI.
publishDate 2013
dc.date.none.fl_str_mv 2013-02-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/3/3137/tde-31072013-003811/
url http://www.teses.usp.br/teses/disponiveis/3/3137/tde-31072013-003811/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258603524718592