Condições de otimalidade, qualificação e métodos tipo Lagrangiano aumentado para problemas de equilíbrio de Nash generalizados

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Rojas, Frank Navarro
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45132/tde-27032018-114413/
Resumo: Esta tese é um estudo acerca do Problema de Equilíbrio de Nash Generalizado (GNEP). Na primeira parte, faremos um resumo dos principais conceitos sobre GNEPs, a relação com outros problemas já conhecidos e comentaremos brevemente os principais métodos já feitos até esta data para resolver numericamente este tipo de problema. Na segunda parte, estudamos condições de otimalidade e condições de qualificação (CQ) para GNEPs, fazendo uma analogia como em otimização. Estendemos os conceitos de cone tangente, normal, gerado pelas restrições ativas, linearizado e polar para a estrutura dos GNEPs. Cada CQ de otimização gera dois tipos de CQ para GNEPs, sendo que a denotada por CQ-GNEP é mais forte e útil para a análise de algoritmos para GNEPs. Mostramos que as condições de qualificação para GNEPs deste tipo em alguns casos não guardam a mesma relação que em otimização. Estendemos também o conceito de Aproximadamente Karush-KuhnTucker (AKKT) de otimização para GNEPs, o AKKT-GNEP. É bem conhecido que AKKT é uma genuína condição de otimalidade em otimização, mas para o caso dos GNEPs mostramos que isto não ocorre em geral. Por outro lado, AKKT-GNEP é satisfeito, por exemplo, em qualquer solução de um GNEP conjuntamente convexo, desde que seja um equilíbrio bvariacional. Com isso em mente, definimos um método do tipo Lagrangiano Aumentado para o GNEP usando penalidades quadráticas e exponenciais e estudamos as propriedades de otimalidade e viabilidade dos pontos limites de sequências geradas pelo algoritmo. Finalmente alguns critérios para resolver os subproblemas e resultados numéricos são apresentados.
id USP_0e4d4d3492464f9a96b18cf100f59563
oai_identifier_str oai:teses.usp.br:tde-27032018-114413
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Condições de otimalidade, qualificação e métodos tipo Lagrangiano aumentado para problemas de equilíbrio de Nash generalizadosOptimality conditions, constraint qualifications and Augmented Lagrangian type methods for Generalized Nash Equilibrium ProblemsAugmented Lagrangian methodsCondições de otimalidadeCondições de qualificaçãoConstraint qualificationsGeneralized Nash Equilibrium ProblemMétodo Lagrangiano aumentadoOptimality conditionsProblemas de Equilíbrio de Nash GeneralizadosEsta tese é um estudo acerca do Problema de Equilíbrio de Nash Generalizado (GNEP). Na primeira parte, faremos um resumo dos principais conceitos sobre GNEPs, a relação com outros problemas já conhecidos e comentaremos brevemente os principais métodos já feitos até esta data para resolver numericamente este tipo de problema. Na segunda parte, estudamos condições de otimalidade e condições de qualificação (CQ) para GNEPs, fazendo uma analogia como em otimização. Estendemos os conceitos de cone tangente, normal, gerado pelas restrições ativas, linearizado e polar para a estrutura dos GNEPs. Cada CQ de otimização gera dois tipos de CQ para GNEPs, sendo que a denotada por CQ-GNEP é mais forte e útil para a análise de algoritmos para GNEPs. Mostramos que as condições de qualificação para GNEPs deste tipo em alguns casos não guardam a mesma relação que em otimização. Estendemos também o conceito de Aproximadamente Karush-KuhnTucker (AKKT) de otimização para GNEPs, o AKKT-GNEP. É bem conhecido que AKKT é uma genuína condição de otimalidade em otimização, mas para o caso dos GNEPs mostramos que isto não ocorre em geral. Por outro lado, AKKT-GNEP é satisfeito, por exemplo, em qualquer solução de um GNEP conjuntamente convexo, desde que seja um equilíbrio bvariacional. Com isso em mente, definimos um método do tipo Lagrangiano Aumentado para o GNEP usando penalidades quadráticas e exponenciais e estudamos as propriedades de otimalidade e viabilidade dos pontos limites de sequências geradas pelo algoritmo. Finalmente alguns critérios para resolver os subproblemas e resultados numéricos são apresentados.This thesis is a study about the generalized Nash equilibrium problem (GNEP). In the first part we will summarize the main concepts about GNEPs, the relationship with other known problems and we will briefly comment on the main methods already done in order to solve these problems numerically. In the second part we study optimality conditions and constraint qualification (CQ) for GNEPs making an analogy with the optimization case. We extend the concepts of the tangent, normal and generated by the active cones, linear and polar cone to the structure of the GNEPs. Each optimization CQ generates two types of CQs for GNEPs, with the one called CQ-GNEP being the strongest and most useful for analyzing the algorithms for GNEPs. We show that the qualification conditions for GNEPs of this type in some cases do not have the same relation as in optimization. We also extend the Approximate Karush- Kuhn-Tucker (AKKT) concept used in optimization for GNEPs to AKKT-GNEP. It is well known that AKKT is a genuine optimality condition in optimization but for GNEPs we show that this does not occur in general. On the other hand, AKKT-GNEP is satisfied, for example, in any solution of a jointly convex GNEP, provided that it is a b-variational equilibrium. With this in mind, we define Augmented Lagrangian methods for the GNEP, using the quadratic and the exponential penalties, and we study the optimality and feasibility properties of the sequence of points generated by the algorithms. Finally some criteria to solve the subproblems and numerical results are presented.Biblioteca Digitais de Teses e Dissertações da USPBueno, Luis Felipe Cesar da RochaHaeser, GabrielRojas, Frank Navarro2018-03-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45132/tde-27032018-114413/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-07-19T20:50:39Zoai:teses.usp.br:tde-27032018-114413Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-19T20:50:39Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Condições de otimalidade, qualificação e métodos tipo Lagrangiano aumentado para problemas de equilíbrio de Nash generalizados
Optimality conditions, constraint qualifications and Augmented Lagrangian type methods for Generalized Nash Equilibrium Problems
title Condições de otimalidade, qualificação e métodos tipo Lagrangiano aumentado para problemas de equilíbrio de Nash generalizados
spellingShingle Condições de otimalidade, qualificação e métodos tipo Lagrangiano aumentado para problemas de equilíbrio de Nash generalizados
Rojas, Frank Navarro
Augmented Lagrangian methods
Condições de otimalidade
Condições de qualificação
Constraint qualifications
Generalized Nash Equilibrium Problem
Método Lagrangiano aumentado
Optimality conditions
Problemas de Equilíbrio de Nash Generalizados
title_short Condições de otimalidade, qualificação e métodos tipo Lagrangiano aumentado para problemas de equilíbrio de Nash generalizados
title_full Condições de otimalidade, qualificação e métodos tipo Lagrangiano aumentado para problemas de equilíbrio de Nash generalizados
title_fullStr Condições de otimalidade, qualificação e métodos tipo Lagrangiano aumentado para problemas de equilíbrio de Nash generalizados
title_full_unstemmed Condições de otimalidade, qualificação e métodos tipo Lagrangiano aumentado para problemas de equilíbrio de Nash generalizados
title_sort Condições de otimalidade, qualificação e métodos tipo Lagrangiano aumentado para problemas de equilíbrio de Nash generalizados
author Rojas, Frank Navarro
author_facet Rojas, Frank Navarro
author_role author
dc.contributor.none.fl_str_mv Bueno, Luis Felipe Cesar da Rocha
Haeser, Gabriel
dc.contributor.author.fl_str_mv Rojas, Frank Navarro
dc.subject.por.fl_str_mv Augmented Lagrangian methods
Condições de otimalidade
Condições de qualificação
Constraint qualifications
Generalized Nash Equilibrium Problem
Método Lagrangiano aumentado
Optimality conditions
Problemas de Equilíbrio de Nash Generalizados
topic Augmented Lagrangian methods
Condições de otimalidade
Condições de qualificação
Constraint qualifications
Generalized Nash Equilibrium Problem
Método Lagrangiano aumentado
Optimality conditions
Problemas de Equilíbrio de Nash Generalizados
description Esta tese é um estudo acerca do Problema de Equilíbrio de Nash Generalizado (GNEP). Na primeira parte, faremos um resumo dos principais conceitos sobre GNEPs, a relação com outros problemas já conhecidos e comentaremos brevemente os principais métodos já feitos até esta data para resolver numericamente este tipo de problema. Na segunda parte, estudamos condições de otimalidade e condições de qualificação (CQ) para GNEPs, fazendo uma analogia como em otimização. Estendemos os conceitos de cone tangente, normal, gerado pelas restrições ativas, linearizado e polar para a estrutura dos GNEPs. Cada CQ de otimização gera dois tipos de CQ para GNEPs, sendo que a denotada por CQ-GNEP é mais forte e útil para a análise de algoritmos para GNEPs. Mostramos que as condições de qualificação para GNEPs deste tipo em alguns casos não guardam a mesma relação que em otimização. Estendemos também o conceito de Aproximadamente Karush-KuhnTucker (AKKT) de otimização para GNEPs, o AKKT-GNEP. É bem conhecido que AKKT é uma genuína condição de otimalidade em otimização, mas para o caso dos GNEPs mostramos que isto não ocorre em geral. Por outro lado, AKKT-GNEP é satisfeito, por exemplo, em qualquer solução de um GNEP conjuntamente convexo, desde que seja um equilíbrio bvariacional. Com isso em mente, definimos um método do tipo Lagrangiano Aumentado para o GNEP usando penalidades quadráticas e exponenciais e estudamos as propriedades de otimalidade e viabilidade dos pontos limites de sequências geradas pelo algoritmo. Finalmente alguns critérios para resolver os subproblemas e resultados numéricos são apresentados.
publishDate 2018
dc.date.none.fl_str_mv 2018-03-14
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/45/45132/tde-27032018-114413/
url http://www.teses.usp.br/teses/disponiveis/45/45132/tde-27032018-114413/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258515462160384