Mineração de padrões frequentes em séries temporais para apoio à tomada de decisão em agrometereologia

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Chino, Daniel Yoshinobu Takada
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-04062014-142915/
Resumo: O crescente aumento no volume de dados complexos tem se tornado um desafio para pesquisadores. Séries temporais são um tipo de dados complexos que tem tido um crescimento em sua relevância, devido a sua importância para o monitoramento e acompanhamento de safras agrícolas. Assim, a mineração de informação a partir de grandes volumes de séries temporais para o apoio a tomada de decisões tem se tornado uma atividade valiosa. Uma das atividades importantes na mineração em séries temporais é a descoberta de padrões frequentes. Entretanto, a complexidade dessa atividade requer métodos rápidos e eficientes. Nesse contexto, esta dissertação de mestrado apresenta propostas para novos algoritmos e métodos para minerar e indexar séries temporais. Uma das propostas dessa dissertação é o índice Telesto, que utiliza uma estrutura baseada em árvores de sufixo generalizada para recuperar séries temporais em uma base de dados de séries temporais de modo rápido e eficiente. Outra proposta dessa dissertação é o algoritmo TrieMotif, que se baseia em uma trie para eliminar comparações desnecessárias entre subsequências, agilizando o processo de mineração de padrões frequentes em séries temporais. Os algoritmos propostos foram utilizados para a análise de dados climáticos e agrometeorológicos. Os resultados apresentados nessa dissertação de mestrado mostram que os algoritmos são escaláveis, podendo ser utilizados para grandes volumes de dados
id USP_1074a9b971b7e34f60eab89d05eede12
oai_identifier_str oai:teses.usp.br:tde-04062014-142915
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Mineração de padrões frequentes em séries temporais para apoio à tomada de decisão em agrometereologiaMining frequent patterns in time series to support decision-making in agrometeorologyData miningFrequent patternsMineração de dadosPadrões frequentesSéries temporaisTime seriesO crescente aumento no volume de dados complexos tem se tornado um desafio para pesquisadores. Séries temporais são um tipo de dados complexos que tem tido um crescimento em sua relevância, devido a sua importância para o monitoramento e acompanhamento de safras agrícolas. Assim, a mineração de informação a partir de grandes volumes de séries temporais para o apoio a tomada de decisões tem se tornado uma atividade valiosa. Uma das atividades importantes na mineração em séries temporais é a descoberta de padrões frequentes. Entretanto, a complexidade dessa atividade requer métodos rápidos e eficientes. Nesse contexto, esta dissertação de mestrado apresenta propostas para novos algoritmos e métodos para minerar e indexar séries temporais. Uma das propostas dessa dissertação é o índice Telesto, que utiliza uma estrutura baseada em árvores de sufixo generalizada para recuperar séries temporais em uma base de dados de séries temporais de modo rápido e eficiente. Outra proposta dessa dissertação é o algoritmo TrieMotif, que se baseia em uma trie para eliminar comparações desnecessárias entre subsequências, agilizando o processo de mineração de padrões frequentes em séries temporais. Os algoritmos propostos foram utilizados para a análise de dados climáticos e agrometeorológicos. Os resultados apresentados nessa dissertação de mestrado mostram que os algoritmos são escaláveis, podendo ser utilizados para grandes volumes de dadosDealing with large volumes of complex data is a challenging task that has motivated many researchers around the world. Time series is a type of complex data that is growing in importance due to the increasing demand of sensors for surveillance and monitoring. Thus, mining information from large volumes of time series to support decision making is a valuable activity nowadays. This Master dissertation goes in this direction, as it proposes new algorithms and methods to mine and index time series. The novelty of the TrieMotif, a new algorithm to mine frequent patterns (motifs) from time series employing a trie structure that allows clever comparison between the sequences, as well as the Telesto index structure based on suffix trees area presented and discussed in the context of agrometeorological and climatological data, being the two main contributions of this work. The dissertation shows that the proposed algorithms are scalable, being suitable to big data, and when compared to the competitors they always presented the best resultsBiblioteca Digitais de Teses e Dissertações da USPTraina, Agma Juci MachadoChino, Daniel Yoshinobu Takada2014-03-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-04062014-142915/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:49Zoai:teses.usp.br:tde-04062014-142915Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:49Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Mineração de padrões frequentes em séries temporais para apoio à tomada de decisão em agrometereologia
Mining frequent patterns in time series to support decision-making in agrometeorology
title Mineração de padrões frequentes em séries temporais para apoio à tomada de decisão em agrometereologia
spellingShingle Mineração de padrões frequentes em séries temporais para apoio à tomada de decisão em agrometereologia
Chino, Daniel Yoshinobu Takada
Data mining
Frequent patterns
Mineração de dados
Padrões frequentes
Séries temporais
Time series
title_short Mineração de padrões frequentes em séries temporais para apoio à tomada de decisão em agrometereologia
title_full Mineração de padrões frequentes em séries temporais para apoio à tomada de decisão em agrometereologia
title_fullStr Mineração de padrões frequentes em séries temporais para apoio à tomada de decisão em agrometereologia
title_full_unstemmed Mineração de padrões frequentes em séries temporais para apoio à tomada de decisão em agrometereologia
title_sort Mineração de padrões frequentes em séries temporais para apoio à tomada de decisão em agrometereologia
author Chino, Daniel Yoshinobu Takada
author_facet Chino, Daniel Yoshinobu Takada
author_role author
dc.contributor.none.fl_str_mv Traina, Agma Juci Machado
dc.contributor.author.fl_str_mv Chino, Daniel Yoshinobu Takada
dc.subject.por.fl_str_mv Data mining
Frequent patterns
Mineração de dados
Padrões frequentes
Séries temporais
Time series
topic Data mining
Frequent patterns
Mineração de dados
Padrões frequentes
Séries temporais
Time series
description O crescente aumento no volume de dados complexos tem se tornado um desafio para pesquisadores. Séries temporais são um tipo de dados complexos que tem tido um crescimento em sua relevância, devido a sua importância para o monitoramento e acompanhamento de safras agrícolas. Assim, a mineração de informação a partir de grandes volumes de séries temporais para o apoio a tomada de decisões tem se tornado uma atividade valiosa. Uma das atividades importantes na mineração em séries temporais é a descoberta de padrões frequentes. Entretanto, a complexidade dessa atividade requer métodos rápidos e eficientes. Nesse contexto, esta dissertação de mestrado apresenta propostas para novos algoritmos e métodos para minerar e indexar séries temporais. Uma das propostas dessa dissertação é o índice Telesto, que utiliza uma estrutura baseada em árvores de sufixo generalizada para recuperar séries temporais em uma base de dados de séries temporais de modo rápido e eficiente. Outra proposta dessa dissertação é o algoritmo TrieMotif, que se baseia em uma trie para eliminar comparações desnecessárias entre subsequências, agilizando o processo de mineração de padrões frequentes em séries temporais. Os algoritmos propostos foram utilizados para a análise de dados climáticos e agrometeorológicos. Os resultados apresentados nessa dissertação de mestrado mostram que os algoritmos são escaláveis, podendo ser utilizados para grandes volumes de dados
publishDate 2014
dc.date.none.fl_str_mv 2014-03-18
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55134/tde-04062014-142915/
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-04062014-142915/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257853228744704