Identificação de fontes de partículas finas na atmosfera urbana de São Paulo

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: Oyama, Beatriz Sayuri
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/14/14133/tde-22072013-104205/
Resumo: Muitos estudos têm sido desenvolvidos com o intuito de descrever a química da fase gasosa na atmosfera da Região Metropolitana de São Paulo (RMSP). Contudo, o tratamento do material particulado (PM) ainda é feito de forma simplificada em modelos de transporte e químicos atmosféricos, apesar do grande conhecimento já adquirido na caracterização da sua composição elementar e da sua estrutura física. Tendo isso em vista, o objetivo do presente estudo é identificar as principais fontes emissoras do material particulado fino, em especial as fontes veiculares que apresentam muitas dificuldades para sua identificação por não haver medidas de traçadores específicos para os combustíveis utilizados. Neste trabalho foram realizadas amostragens, que duravam 24 horas, próximas a uma avenida de intenso tráfego (Avenida Dr. Arnaldo, na Faculdade de Medicina da Universidade de São Paulo) no período de junho de 2007 a agosto de 2008. Com os dados de composição dessas amostras, a identificação das possíveis fontes foi realizada por modelos receptores; mais especificamente foram utilizados: Análise de Fatores (AF) e Positive Matrix Factorization (PMF), uma nova ferramenta estatística, que ainda não havia sido aplicada no estudo do material particulado em São Paulo. O número de fontes identificadas por essas duas ferramentas estatísticas não foi o mesmo: na AF foram extraídos 4 fatores (solo, queima de óleo combustível e dois fatores que se dividiram, identificando a emissão de veículos leves e pesados não diferenciados), enquanto que o PMF identificou 6 (as mesmas fontes identificadas pela AF, com a diferenciação da emissão veicular (leves e pesados) e ainda a queima de biomassa). Houve concordância entre as duas análises que a maior participação para formação de material particulado fino é da emissão por veículos. A comparação entre os modelos mostrou que os resultados obtidos pelo PMF apresentaram uma melhor divisão das fontes, principalmente na identificação das frotas veiculares. Isso se deve ao fato do PMF considerar na análise o erro de cada concentração medida como um peso para cada variável, além de não permitir a ocorrência de fatores negativos, caracterizando melhor as fontes através da presença desses vínculos físicos.
id USP_1201e85ec2b027ebc36aab66d1ba51d5
oai_identifier_str oai:teses.usp.br:tde-22072013-104205
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Identificação de fontes de partículas finas na atmosfera urbana de São PauloFine particulate emission sources identification in the atmosphere of São Pauloaerossóis atmosféricosair pollutionatmospheric aerosolsatmospheric chemistryemissões veicularesfine particlesmodelos de qualidade do armodels of air qualitypartículas finasPoluição do arquímica da atmosferavehicular emissionMuitos estudos têm sido desenvolvidos com o intuito de descrever a química da fase gasosa na atmosfera da Região Metropolitana de São Paulo (RMSP). Contudo, o tratamento do material particulado (PM) ainda é feito de forma simplificada em modelos de transporte e químicos atmosféricos, apesar do grande conhecimento já adquirido na caracterização da sua composição elementar e da sua estrutura física. Tendo isso em vista, o objetivo do presente estudo é identificar as principais fontes emissoras do material particulado fino, em especial as fontes veiculares que apresentam muitas dificuldades para sua identificação por não haver medidas de traçadores específicos para os combustíveis utilizados. Neste trabalho foram realizadas amostragens, que duravam 24 horas, próximas a uma avenida de intenso tráfego (Avenida Dr. Arnaldo, na Faculdade de Medicina da Universidade de São Paulo) no período de junho de 2007 a agosto de 2008. Com os dados de composição dessas amostras, a identificação das possíveis fontes foi realizada por modelos receptores; mais especificamente foram utilizados: Análise de Fatores (AF) e Positive Matrix Factorization (PMF), uma nova ferramenta estatística, que ainda não havia sido aplicada no estudo do material particulado em São Paulo. O número de fontes identificadas por essas duas ferramentas estatísticas não foi o mesmo: na AF foram extraídos 4 fatores (solo, queima de óleo combustível e dois fatores que se dividiram, identificando a emissão de veículos leves e pesados não diferenciados), enquanto que o PMF identificou 6 (as mesmas fontes identificadas pela AF, com a diferenciação da emissão veicular (leves e pesados) e ainda a queima de biomassa). Houve concordância entre as duas análises que a maior participação para formação de material particulado fino é da emissão por veículos. A comparação entre os modelos mostrou que os resultados obtidos pelo PMF apresentaram uma melhor divisão das fontes, principalmente na identificação das frotas veiculares. Isso se deve ao fato do PMF considerar na análise o erro de cada concentração medida como um peso para cada variável, além de não permitir a ocorrência de fatores negativos, caracterizando melhor as fontes através da presença desses vínculos físicos.Several studies have been developed in order to describe the gaseous phase of atmospheric constituents in the Metropolitan Region of Sao Paulo (RMSP). However, the aerosol description remains simplified in chemical models, despite the knowledge acquired in its characterization and composition analyses. Facing these limitations, the objective of this work is to identify the main emission sources of fine particulate matter, specially the vehicular ones that present a lot of difficulties due to the fact that the characteristic trace elements are unknown for these sources. It was used in this work 201 samples collected in 24-hour period each at Dr. Arnaldo Avenue, a large and busy avenue in the city of São Paulo, from June 2007 to August 2008. The source identification was accomplished considering the samples composition and using receptor models: Factor Analysis (FA) and Positive Matrix Factorization (PMF) techniques. PMF was a new statistical tool in the study of particulates in the city of São Paulo. The number of sources identified by these two models was different. The FA technique identified 4 factors, (soil, fuel burning, and 2 factors combining in light and heavy-duty vehicles), whereas PMF identified 6, the same as FA (light and heavier vehicles differentiated) and biomass burning. There was concordance between the two techniques, considering that both found that vehicular emission is the major contribution for concentration. The comparison between the models indicated that PMF model present a better source classification, mainly for the vehicular identification. The PMF technique considers the error of each sample in the analysis, weighting the variables and imposing that all the factors must be positive. This mechanism provides a better characterization of sources linking the results with the physics of the process.Biblioteca Digitais de Teses e Dissertações da USPAndrade, Maria de FatimaOyama, Beatriz Sayuri2010-05-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/14/14133/tde-22072013-104205/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2019-04-09T23:21:59Zoai:teses.usp.br:tde-22072013-104205Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-04-09T23:21:59Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Identificação de fontes de partículas finas na atmosfera urbana de São Paulo
Fine particulate emission sources identification in the atmosphere of São Paulo
title Identificação de fontes de partículas finas na atmosfera urbana de São Paulo
spellingShingle Identificação de fontes de partículas finas na atmosfera urbana de São Paulo
Oyama, Beatriz Sayuri
aerossóis atmosféricos
air pollution
atmospheric aerosols
atmospheric chemistry
emissões veiculares
fine particles
modelos de qualidade do ar
models of air quality
partículas finas
Poluição do ar
química da atmosfera
vehicular emission
title_short Identificação de fontes de partículas finas na atmosfera urbana de São Paulo
title_full Identificação de fontes de partículas finas na atmosfera urbana de São Paulo
title_fullStr Identificação de fontes de partículas finas na atmosfera urbana de São Paulo
title_full_unstemmed Identificação de fontes de partículas finas na atmosfera urbana de São Paulo
title_sort Identificação de fontes de partículas finas na atmosfera urbana de São Paulo
author Oyama, Beatriz Sayuri
author_facet Oyama, Beatriz Sayuri
author_role author
dc.contributor.none.fl_str_mv Andrade, Maria de Fatima
dc.contributor.author.fl_str_mv Oyama, Beatriz Sayuri
dc.subject.por.fl_str_mv aerossóis atmosféricos
air pollution
atmospheric aerosols
atmospheric chemistry
emissões veiculares
fine particles
modelos de qualidade do ar
models of air quality
partículas finas
Poluição do ar
química da atmosfera
vehicular emission
topic aerossóis atmosféricos
air pollution
atmospheric aerosols
atmospheric chemistry
emissões veiculares
fine particles
modelos de qualidade do ar
models of air quality
partículas finas
Poluição do ar
química da atmosfera
vehicular emission
description Muitos estudos têm sido desenvolvidos com o intuito de descrever a química da fase gasosa na atmosfera da Região Metropolitana de São Paulo (RMSP). Contudo, o tratamento do material particulado (PM) ainda é feito de forma simplificada em modelos de transporte e químicos atmosféricos, apesar do grande conhecimento já adquirido na caracterização da sua composição elementar e da sua estrutura física. Tendo isso em vista, o objetivo do presente estudo é identificar as principais fontes emissoras do material particulado fino, em especial as fontes veiculares que apresentam muitas dificuldades para sua identificação por não haver medidas de traçadores específicos para os combustíveis utilizados. Neste trabalho foram realizadas amostragens, que duravam 24 horas, próximas a uma avenida de intenso tráfego (Avenida Dr. Arnaldo, na Faculdade de Medicina da Universidade de São Paulo) no período de junho de 2007 a agosto de 2008. Com os dados de composição dessas amostras, a identificação das possíveis fontes foi realizada por modelos receptores; mais especificamente foram utilizados: Análise de Fatores (AF) e Positive Matrix Factorization (PMF), uma nova ferramenta estatística, que ainda não havia sido aplicada no estudo do material particulado em São Paulo. O número de fontes identificadas por essas duas ferramentas estatísticas não foi o mesmo: na AF foram extraídos 4 fatores (solo, queima de óleo combustível e dois fatores que se dividiram, identificando a emissão de veículos leves e pesados não diferenciados), enquanto que o PMF identificou 6 (as mesmas fontes identificadas pela AF, com a diferenciação da emissão veicular (leves e pesados) e ainda a queima de biomassa). Houve concordância entre as duas análises que a maior participação para formação de material particulado fino é da emissão por veículos. A comparação entre os modelos mostrou que os resultados obtidos pelo PMF apresentaram uma melhor divisão das fontes, principalmente na identificação das frotas veiculares. Isso se deve ao fato do PMF considerar na análise o erro de cada concentração medida como um peso para cada variável, além de não permitir a ocorrência de fatores negativos, caracterizando melhor as fontes através da presença desses vínculos físicos.
publishDate 2010
dc.date.none.fl_str_mv 2010-05-03
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/14/14133/tde-22072013-104205/
url http://www.teses.usp.br/teses/disponiveis/14/14133/tde-22072013-104205/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258390417375232