Transições de fase em modelos estocásticos para descrever epidemias

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Souza, David Rodrigues de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/43/43134/tde-26032013-131452/
Resumo: Este trabalho busca descrever sistemas irreversíveis (aqueles que não obedecem ao balanceamento detalhado) usando o formalismo mecânico-estatístico que tem como base a dinâmica estocástica. Nossos principais objetivos são: (i) a investigação do comportamento crítico e das possíveis classes de universalidade em sistemas irreversíveis; (ii) a modelagem da dinâmica de propagação de epidemias. Primeiramente investigamos o modelo suscetível-infectado-recuperado (SIR) estocástico e espacialmente estruturado. Nesse modelo, os indivíduos são divididos em três classes: suscetível (S), infectado devido ao contato com um vizinho infectado, e um individuo infectado pode recuperar-se espontaneamente. Este modelo exibe transição de fase em que a doença se espalha e uma fase em que não há espalhamento da doença. Tratando cada par suscetível-infectado como uma conexão através da qual pode haver propagação da epidemia, mostramos que é possível estabelecer uma conexão entre o modelo SIR e o modelo de percolação. Assim, pudemos utilizar métodos da teoria de percolação usual para determinar o limiar de espalhamento epidêmico. Por meio de aproximações de campo médio dinâmico, simulações computacionais de Monte Carlo estacionárias e simulações dependentes do tempo, determinamos o ponto critico e o comportamento critico desse modelo. Ademais, propomos dois modelos para descrever um processo epidêmico de transmissão vetorial. Consideramos duas populações interagentes uma formada por vetores e a outra por hospedeiros. Os vetores podem ser suscetíveis (S) ou infectados (I), enquanto os estados permitidos para os hospedeiros são os mesmos do modelo SIR. O processo de transmissão da doença ocorre devido ao contato local de um hospedeiro (vetor) suscetível com um vetor (hospedeiro) infectado. Determinamos o limiar de infecção, o tamanho da epidemia e mostramos que ambos os modelos exibem transições de fase de segunda ordem e que pertencem à classe de universalidade da percolação dinâmica isotrópica.
id USP_136bb780b5aafb72edc76dba27e33d18
oai_identifier_str oai:teses.usp.br:tde-26032013-131452
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Transições de fase em modelos estocásticos para descrever epidemiasPhase transitions in stochastic models for describing epidemicsbiological phusicsepidemiological modelsfísica biológicamecânica estatísticamodelos epidemológicosphase transitions in systems irreversibleprocessos estocásticosstatistical mechanicsstochastic processestransições de fase em sistema irreversíveisEste trabalho busca descrever sistemas irreversíveis (aqueles que não obedecem ao balanceamento detalhado) usando o formalismo mecânico-estatístico que tem como base a dinâmica estocástica. Nossos principais objetivos são: (i) a investigação do comportamento crítico e das possíveis classes de universalidade em sistemas irreversíveis; (ii) a modelagem da dinâmica de propagação de epidemias. Primeiramente investigamos o modelo suscetível-infectado-recuperado (SIR) estocástico e espacialmente estruturado. Nesse modelo, os indivíduos são divididos em três classes: suscetível (S), infectado devido ao contato com um vizinho infectado, e um individuo infectado pode recuperar-se espontaneamente. Este modelo exibe transição de fase em que a doença se espalha e uma fase em que não há espalhamento da doença. Tratando cada par suscetível-infectado como uma conexão através da qual pode haver propagação da epidemia, mostramos que é possível estabelecer uma conexão entre o modelo SIR e o modelo de percolação. Assim, pudemos utilizar métodos da teoria de percolação usual para determinar o limiar de espalhamento epidêmico. Por meio de aproximações de campo médio dinâmico, simulações computacionais de Monte Carlo estacionárias e simulações dependentes do tempo, determinamos o ponto critico e o comportamento critico desse modelo. Ademais, propomos dois modelos para descrever um processo epidêmico de transmissão vetorial. Consideramos duas populações interagentes uma formada por vetores e a outra por hospedeiros. Os vetores podem ser suscetíveis (S) ou infectados (I), enquanto os estados permitidos para os hospedeiros são os mesmos do modelo SIR. O processo de transmissão da doença ocorre devido ao contato local de um hospedeiro (vetor) suscetível com um vetor (hospedeiro) infectado. Determinamos o limiar de infecção, o tamanho da epidemia e mostramos que ambos os modelos exibem transições de fase de segunda ordem e que pertencem à classe de universalidade da percolação dinâmica isotrópica.This study aims to describe irreversible systems (those that do not obey detailed balance) using a statistical mechanics formalism based on stochastic dynamics. Our main objectives are: (i) to investigate the critical behavior and the possible universality classes in irreversible systems; (ii) and modeling the dynamics of epidemic spreading. First we investigate the stochastic and spatially structured susceptible-infected-recovered model (SIR). In this model, individuals are divided into three classes: susceptible (S), infected (I) and recovered (R). A susceptible individual may become infected due to contact with an infected neighbor, and an infected individual may recover spontaneously. This model exhibits a phase transition between a phase in which the epidemic spreads and a phase where there is no spreading of the disease. Treating each susceptible-infected pair as a connection through which there may be epidemic spreading, we show that it is possible to establish a connection between the SIR model and the percolation model. Thus we are able to use methods of the theory of standard percolation for determining the epidemic spreading. By means of dynamic mean-field approximations and stationary and time-dependent computational Monte Carlo simulations, we determine the critical point and critical behavior of this model. In addition, we propose two models to describe the vector transmitted epidemic process. We consider two interacting populations, one formed by vectors and other by hosts. The vectors may be susceptible (S) or infected (I), where the states allowed for the hosts are the same as those in the SIR model. Transmission of the disease occurs due to contact between a local host (vector) and a susceptible vector (host) infected. We determine the threshold of infection, the size of the epidemic, and show that both models exhibit second order phase transitions that belong to the universality class of dynamic isotropic percolation.Biblioteca Digitais de Teses e Dissertações da USPCastro, Tania Tome Martins deSouza, David Rodrigues de2012-08-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/43/43134/tde-26032013-131452/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:36Zoai:teses.usp.br:tde-26032013-131452Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:36Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Transições de fase em modelos estocásticos para descrever epidemias
Phase transitions in stochastic models for describing epidemics
title Transições de fase em modelos estocásticos para descrever epidemias
spellingShingle Transições de fase em modelos estocásticos para descrever epidemias
Souza, David Rodrigues de
biological phusics
epidemiological models
física biológica
mecânica estatística
modelos epidemológicos
phase transitions in systems irreversible
processos estocásticos
statistical mechanics
stochastic processes
transições de fase em sistema irreversíveis
title_short Transições de fase em modelos estocásticos para descrever epidemias
title_full Transições de fase em modelos estocásticos para descrever epidemias
title_fullStr Transições de fase em modelos estocásticos para descrever epidemias
title_full_unstemmed Transições de fase em modelos estocásticos para descrever epidemias
title_sort Transições de fase em modelos estocásticos para descrever epidemias
author Souza, David Rodrigues de
author_facet Souza, David Rodrigues de
author_role author
dc.contributor.none.fl_str_mv Castro, Tania Tome Martins de
dc.contributor.author.fl_str_mv Souza, David Rodrigues de
dc.subject.por.fl_str_mv biological phusics
epidemiological models
física biológica
mecânica estatística
modelos epidemológicos
phase transitions in systems irreversible
processos estocásticos
statistical mechanics
stochastic processes
transições de fase em sistema irreversíveis
topic biological phusics
epidemiological models
física biológica
mecânica estatística
modelos epidemológicos
phase transitions in systems irreversible
processos estocásticos
statistical mechanics
stochastic processes
transições de fase em sistema irreversíveis
description Este trabalho busca descrever sistemas irreversíveis (aqueles que não obedecem ao balanceamento detalhado) usando o formalismo mecânico-estatístico que tem como base a dinâmica estocástica. Nossos principais objetivos são: (i) a investigação do comportamento crítico e das possíveis classes de universalidade em sistemas irreversíveis; (ii) a modelagem da dinâmica de propagação de epidemias. Primeiramente investigamos o modelo suscetível-infectado-recuperado (SIR) estocástico e espacialmente estruturado. Nesse modelo, os indivíduos são divididos em três classes: suscetível (S), infectado devido ao contato com um vizinho infectado, e um individuo infectado pode recuperar-se espontaneamente. Este modelo exibe transição de fase em que a doença se espalha e uma fase em que não há espalhamento da doença. Tratando cada par suscetível-infectado como uma conexão através da qual pode haver propagação da epidemia, mostramos que é possível estabelecer uma conexão entre o modelo SIR e o modelo de percolação. Assim, pudemos utilizar métodos da teoria de percolação usual para determinar o limiar de espalhamento epidêmico. Por meio de aproximações de campo médio dinâmico, simulações computacionais de Monte Carlo estacionárias e simulações dependentes do tempo, determinamos o ponto critico e o comportamento critico desse modelo. Ademais, propomos dois modelos para descrever um processo epidêmico de transmissão vetorial. Consideramos duas populações interagentes uma formada por vetores e a outra por hospedeiros. Os vetores podem ser suscetíveis (S) ou infectados (I), enquanto os estados permitidos para os hospedeiros são os mesmos do modelo SIR. O processo de transmissão da doença ocorre devido ao contato local de um hospedeiro (vetor) suscetível com um vetor (hospedeiro) infectado. Determinamos o limiar de infecção, o tamanho da epidemia e mostramos que ambos os modelos exibem transições de fase de segunda ordem e que pertencem à classe de universalidade da percolação dinâmica isotrópica.
publishDate 2012
dc.date.none.fl_str_mv 2012-08-31
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/43/43134/tde-26032013-131452/
url http://www.teses.usp.br/teses/disponiveis/43/43134/tde-26032013-131452/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258458524483584