Transições de fase em modelos estocásticos para descrever epidemias
Ano de defesa: | 2012 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://www.teses.usp.br/teses/disponiveis/43/43134/tde-26032013-131452/ |
Resumo: | Este trabalho busca descrever sistemas irreversíveis (aqueles que não obedecem ao balanceamento detalhado) usando o formalismo mecânico-estatístico que tem como base a dinâmica estocástica. Nossos principais objetivos são: (i) a investigação do comportamento crítico e das possíveis classes de universalidade em sistemas irreversíveis; (ii) a modelagem da dinâmica de propagação de epidemias. Primeiramente investigamos o modelo suscetível-infectado-recuperado (SIR) estocástico e espacialmente estruturado. Nesse modelo, os indivíduos são divididos em três classes: suscetível (S), infectado devido ao contato com um vizinho infectado, e um individuo infectado pode recuperar-se espontaneamente. Este modelo exibe transição de fase em que a doença se espalha e uma fase em que não há espalhamento da doença. Tratando cada par suscetível-infectado como uma conexão através da qual pode haver propagação da epidemia, mostramos que é possível estabelecer uma conexão entre o modelo SIR e o modelo de percolação. Assim, pudemos utilizar métodos da teoria de percolação usual para determinar o limiar de espalhamento epidêmico. Por meio de aproximações de campo médio dinâmico, simulações computacionais de Monte Carlo estacionárias e simulações dependentes do tempo, determinamos o ponto critico e o comportamento critico desse modelo. Ademais, propomos dois modelos para descrever um processo epidêmico de transmissão vetorial. Consideramos duas populações interagentes uma formada por vetores e a outra por hospedeiros. Os vetores podem ser suscetíveis (S) ou infectados (I), enquanto os estados permitidos para os hospedeiros são os mesmos do modelo SIR. O processo de transmissão da doença ocorre devido ao contato local de um hospedeiro (vetor) suscetível com um vetor (hospedeiro) infectado. Determinamos o limiar de infecção, o tamanho da epidemia e mostramos que ambos os modelos exibem transições de fase de segunda ordem e que pertencem à classe de universalidade da percolação dinâmica isotrópica. |
id |
USP_136bb780b5aafb72edc76dba27e33d18 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-26032013-131452 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
|
spelling |
Transições de fase em modelos estocásticos para descrever epidemiasPhase transitions in stochastic models for describing epidemicsbiological phusicsepidemiological modelsfísica biológicamecânica estatísticamodelos epidemológicosphase transitions in systems irreversibleprocessos estocásticosstatistical mechanicsstochastic processestransições de fase em sistema irreversíveisEste trabalho busca descrever sistemas irreversíveis (aqueles que não obedecem ao balanceamento detalhado) usando o formalismo mecânico-estatístico que tem como base a dinâmica estocástica. Nossos principais objetivos são: (i) a investigação do comportamento crítico e das possíveis classes de universalidade em sistemas irreversíveis; (ii) a modelagem da dinâmica de propagação de epidemias. Primeiramente investigamos o modelo suscetível-infectado-recuperado (SIR) estocástico e espacialmente estruturado. Nesse modelo, os indivíduos são divididos em três classes: suscetível (S), infectado devido ao contato com um vizinho infectado, e um individuo infectado pode recuperar-se espontaneamente. Este modelo exibe transição de fase em que a doença se espalha e uma fase em que não há espalhamento da doença. Tratando cada par suscetível-infectado como uma conexão através da qual pode haver propagação da epidemia, mostramos que é possível estabelecer uma conexão entre o modelo SIR e o modelo de percolação. Assim, pudemos utilizar métodos da teoria de percolação usual para determinar o limiar de espalhamento epidêmico. Por meio de aproximações de campo médio dinâmico, simulações computacionais de Monte Carlo estacionárias e simulações dependentes do tempo, determinamos o ponto critico e o comportamento critico desse modelo. Ademais, propomos dois modelos para descrever um processo epidêmico de transmissão vetorial. Consideramos duas populações interagentes uma formada por vetores e a outra por hospedeiros. Os vetores podem ser suscetíveis (S) ou infectados (I), enquanto os estados permitidos para os hospedeiros são os mesmos do modelo SIR. O processo de transmissão da doença ocorre devido ao contato local de um hospedeiro (vetor) suscetível com um vetor (hospedeiro) infectado. Determinamos o limiar de infecção, o tamanho da epidemia e mostramos que ambos os modelos exibem transições de fase de segunda ordem e que pertencem à classe de universalidade da percolação dinâmica isotrópica.This study aims to describe irreversible systems (those that do not obey detailed balance) using a statistical mechanics formalism based on stochastic dynamics. Our main objectives are: (i) to investigate the critical behavior and the possible universality classes in irreversible systems; (ii) and modeling the dynamics of epidemic spreading. First we investigate the stochastic and spatially structured susceptible-infected-recovered model (SIR). In this model, individuals are divided into three classes: susceptible (S), infected (I) and recovered (R). A susceptible individual may become infected due to contact with an infected neighbor, and an infected individual may recover spontaneously. This model exhibits a phase transition between a phase in which the epidemic spreads and a phase where there is no spreading of the disease. Treating each susceptible-infected pair as a connection through which there may be epidemic spreading, we show that it is possible to establish a connection between the SIR model and the percolation model. Thus we are able to use methods of the theory of standard percolation for determining the epidemic spreading. By means of dynamic mean-field approximations and stationary and time-dependent computational Monte Carlo simulations, we determine the critical point and critical behavior of this model. In addition, we propose two models to describe the vector transmitted epidemic process. We consider two interacting populations, one formed by vectors and other by hosts. The vectors may be susceptible (S) or infected (I), where the states allowed for the hosts are the same as those in the SIR model. Transmission of the disease occurs due to contact between a local host (vector) and a susceptible vector (host) infected. We determine the threshold of infection, the size of the epidemic, and show that both models exhibit second order phase transitions that belong to the universality class of dynamic isotropic percolation.Biblioteca Digitais de Teses e Dissertações da USPCastro, Tania Tome Martins deSouza, David Rodrigues de2012-08-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/43/43134/tde-26032013-131452/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:36Zoai:teses.usp.br:tde-26032013-131452Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:36Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Transições de fase em modelos estocásticos para descrever epidemias Phase transitions in stochastic models for describing epidemics |
title |
Transições de fase em modelos estocásticos para descrever epidemias |
spellingShingle |
Transições de fase em modelos estocásticos para descrever epidemias Souza, David Rodrigues de biological phusics epidemiological models física biológica mecânica estatística modelos epidemológicos phase transitions in systems irreversible processos estocásticos statistical mechanics stochastic processes transições de fase em sistema irreversíveis |
title_short |
Transições de fase em modelos estocásticos para descrever epidemias |
title_full |
Transições de fase em modelos estocásticos para descrever epidemias |
title_fullStr |
Transições de fase em modelos estocásticos para descrever epidemias |
title_full_unstemmed |
Transições de fase em modelos estocásticos para descrever epidemias |
title_sort |
Transições de fase em modelos estocásticos para descrever epidemias |
author |
Souza, David Rodrigues de |
author_facet |
Souza, David Rodrigues de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Castro, Tania Tome Martins de |
dc.contributor.author.fl_str_mv |
Souza, David Rodrigues de |
dc.subject.por.fl_str_mv |
biological phusics epidemiological models física biológica mecânica estatística modelos epidemológicos phase transitions in systems irreversible processos estocásticos statistical mechanics stochastic processes transições de fase em sistema irreversíveis |
topic |
biological phusics epidemiological models física biológica mecânica estatística modelos epidemológicos phase transitions in systems irreversible processos estocásticos statistical mechanics stochastic processes transições de fase em sistema irreversíveis |
description |
Este trabalho busca descrever sistemas irreversíveis (aqueles que não obedecem ao balanceamento detalhado) usando o formalismo mecânico-estatístico que tem como base a dinâmica estocástica. Nossos principais objetivos são: (i) a investigação do comportamento crítico e das possíveis classes de universalidade em sistemas irreversíveis; (ii) a modelagem da dinâmica de propagação de epidemias. Primeiramente investigamos o modelo suscetível-infectado-recuperado (SIR) estocástico e espacialmente estruturado. Nesse modelo, os indivíduos são divididos em três classes: suscetível (S), infectado devido ao contato com um vizinho infectado, e um individuo infectado pode recuperar-se espontaneamente. Este modelo exibe transição de fase em que a doença se espalha e uma fase em que não há espalhamento da doença. Tratando cada par suscetível-infectado como uma conexão através da qual pode haver propagação da epidemia, mostramos que é possível estabelecer uma conexão entre o modelo SIR e o modelo de percolação. Assim, pudemos utilizar métodos da teoria de percolação usual para determinar o limiar de espalhamento epidêmico. Por meio de aproximações de campo médio dinâmico, simulações computacionais de Monte Carlo estacionárias e simulações dependentes do tempo, determinamos o ponto critico e o comportamento critico desse modelo. Ademais, propomos dois modelos para descrever um processo epidêmico de transmissão vetorial. Consideramos duas populações interagentes uma formada por vetores e a outra por hospedeiros. Os vetores podem ser suscetíveis (S) ou infectados (I), enquanto os estados permitidos para os hospedeiros são os mesmos do modelo SIR. O processo de transmissão da doença ocorre devido ao contato local de um hospedeiro (vetor) suscetível com um vetor (hospedeiro) infectado. Determinamos o limiar de infecção, o tamanho da epidemia e mostramos que ambos os modelos exibem transições de fase de segunda ordem e que pertencem à classe de universalidade da percolação dinâmica isotrópica. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-08-31 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/43/43134/tde-26032013-131452/ |
url |
http://www.teses.usp.br/teses/disponiveis/43/43134/tde-26032013-131452/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815258458524483584 |