Resultados motivados por uma caracterização de operadores pseudo-diferenciais conjecturada por Rieffel.
| Ano de defesa: | 2002 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.teses.usp.br/teses/disponiveis/45/45131/tde-04092003-154149/ |
Resumo: | Trabalhamos com funções definidas em Rn que tomam valores numa C*-álgebra A. Consideramos o conjunto SA (Rn) das funções de Schwartz, (de decrescimento rápido), com norma dada por ||f||2 = ||?f(x)*f(x)dx||½. Denotamos por CB?(R2n,A) o conjunto das funções C? com todas as suas derivadas limitadas. Provamos que os operadores pseudo-diferenciais com símbolo em CB?(R2n,A) são contínuos em SA(Rn) com a norma || ? ||2, fazendo uma generalização de [10]. Rieffel prova em [1] que CB?(Rn,A) age em SA(Rn) por meio de um produto deformado, induzido por uma matriz anti-simétrica, J, como segue: LFg(x)=F×Jg(x) = ?e2?iuvF(x+Ju)g(x+v)dudv, (integral oscilatória). Dizemos que um operador S é Heisenberg-suave se as aplicações z |-> T-zSTz e ? |-> M-?SM?, z,? E Rn, são C? onde Tzg(x)=g(x-z) e M?g(x)=ei?xg(x). No final do capítulo 4 de [1], Rieffel propõe uma conjectura: que todos os operadores \"adjuntáveis\" em SA(Rn), Heisenberg-suaves, que comutam com a representação regular à direita de CB?(Rn,A), RGf = f×JG, são os operadores do tipo LF. Provamos este resultado para o caso A=|C, ver [14], usando a caracterização de Cordes (ver [17]) dos operadores Heisenberg-suaves em L2(Rn) como sendo os operadores pseudo-diferenciais com símbolo em CB?(R2n). Também é provado neste trabalho que, se vale uma generalização natural da caracterização de Cordes, a conjectura de Rieffel é verdadeira. |
| id |
USP_151d077deda5d1c87352b72b5b6daa21 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-04092003-154149 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Resultados motivados por uma caracterização de operadores pseudo-diferenciais conjecturada por Rieffel.Resultados motivados por uma caracterização de operadores pseudo-diferenciais conjecturada por Rieffel.C*-algebraC*-algebrasfunções de SchwartzRieffelRieffelSchwartz functionsTrabalhamos com funções definidas em Rn que tomam valores numa C*-álgebra A. Consideramos o conjunto SA (Rn) das funções de Schwartz, (de decrescimento rápido), com norma dada por ||f||2 = ||?f(x)*f(x)dx||½. Denotamos por CB?(R2n,A) o conjunto das funções C? com todas as suas derivadas limitadas. Provamos que os operadores pseudo-diferenciais com símbolo em CB?(R2n,A) são contínuos em SA(Rn) com a norma || ? ||2, fazendo uma generalização de [10]. Rieffel prova em [1] que CB?(Rn,A) age em SA(Rn) por meio de um produto deformado, induzido por uma matriz anti-simétrica, J, como segue: LFg(x)=F×Jg(x) = ?e2?iuvF(x+Ju)g(x+v)dudv, (integral oscilatória). Dizemos que um operador S é Heisenberg-suave se as aplicações z |-> T-zSTz e ? |-> M-?SM?, z,? E Rn, são C? onde Tzg(x)=g(x-z) e M?g(x)=ei?xg(x). No final do capítulo 4 de [1], Rieffel propõe uma conjectura: que todos os operadores \"adjuntáveis\" em SA(Rn), Heisenberg-suaves, que comutam com a representação regular à direita de CB?(Rn,A), RGf = f×JG, são os operadores do tipo LF. Provamos este resultado para o caso A=|C, ver [14], usando a caracterização de Cordes (ver [17]) dos operadores Heisenberg-suaves em L2(Rn) como sendo os operadores pseudo-diferenciais com símbolo em CB?(R2n). Também é provado neste trabalho que, se vale uma generalização natural da caracterização de Cordes, a conjectura de Rieffel é verdadeira.We work with functions defined on Rn with values in a C*-algebra A. We consider the set SA(Rn) of Schwartz functions (rapidly decreasing), with norm given by ||f||2 = ||?f(x)*f(x)dx||½ . We denote CB?(R2n,A) the set of functions which are C? and have all their derivatives bounded. We prove that pseudo-differential operators with symbol in CB?(R2n,A) are continuous on SA(Rn) with the norm || · ||2, thus generalizing the result in [10]. Rieffel proves in [1] that CB?(Rn,A) acts on SA(Rn) through a deformed product induced by an anti-symmetric matrix, J, as follows: LFg(x)=F×Jg(x) = ?e2?iuvF(x+Ju)g(x+v)dudv (an oscillatory integral). We say that an operator S is Heisenberg-smooth if the maps z |-> T-zSTz and ? |-> M-?SM?, z,? E Rn are C?; where Tzg(x)=g(x-z) and where M?g(x)=ei?xg(x). At the end of chapter 4 of [1], Rieffel proposes a conjecture: that all "adjointable" operators in SA(Rn) that are Heisenberg-smooth and that commute with the right-regular representation of CB?(Rn,A), RGf = f×JG, are operators of type LF . We proved this result for the case A = |C in [14], using Cordes\' characterization of Heisenberg-smooth operators on L2(Rn) as being the pseudo-differential operators with symbol in CB?(R2n). It is also proved in this thesis that, if a natural generalization of Cordes\' characterization is valid, then the Rieffel conjecture is true.Biblioteca Digitais de Teses e Dissertações da USPCerri, CristinaMelo, Severino Toscano do RegoOlivera, Marcela Irene Merklen2002-09-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45131/tde-04092003-154149/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2019-04-16T20:48:23Zoai:teses.usp.br:tde-04092003-154149Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-04-16T20:48:23Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Resultados motivados por uma caracterização de operadores pseudo-diferenciais conjecturada por Rieffel. Resultados motivados por uma caracterização de operadores pseudo-diferenciais conjecturada por Rieffel. |
| title |
Resultados motivados por uma caracterização de operadores pseudo-diferenciais conjecturada por Rieffel. |
| spellingShingle |
Resultados motivados por uma caracterização de operadores pseudo-diferenciais conjecturada por Rieffel. Olivera, Marcela Irene Merklen C*-algebra C*-algebras funções de Schwartz Rieffel Rieffel Schwartz functions |
| title_short |
Resultados motivados por uma caracterização de operadores pseudo-diferenciais conjecturada por Rieffel. |
| title_full |
Resultados motivados por uma caracterização de operadores pseudo-diferenciais conjecturada por Rieffel. |
| title_fullStr |
Resultados motivados por uma caracterização de operadores pseudo-diferenciais conjecturada por Rieffel. |
| title_full_unstemmed |
Resultados motivados por uma caracterização de operadores pseudo-diferenciais conjecturada por Rieffel. |
| title_sort |
Resultados motivados por uma caracterização de operadores pseudo-diferenciais conjecturada por Rieffel. |
| author |
Olivera, Marcela Irene Merklen |
| author_facet |
Olivera, Marcela Irene Merklen |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Cerri, Cristina Melo, Severino Toscano do Rego |
| dc.contributor.author.fl_str_mv |
Olivera, Marcela Irene Merklen |
| dc.subject.por.fl_str_mv |
C*-algebra C*-algebras funções de Schwartz Rieffel Rieffel Schwartz functions |
| topic |
C*-algebra C*-algebras funções de Schwartz Rieffel Rieffel Schwartz functions |
| description |
Trabalhamos com funções definidas em Rn que tomam valores numa C*-álgebra A. Consideramos o conjunto SA (Rn) das funções de Schwartz, (de decrescimento rápido), com norma dada por ||f||2 = ||?f(x)*f(x)dx||½. Denotamos por CB?(R2n,A) o conjunto das funções C? com todas as suas derivadas limitadas. Provamos que os operadores pseudo-diferenciais com símbolo em CB?(R2n,A) são contínuos em SA(Rn) com a norma || ? ||2, fazendo uma generalização de [10]. Rieffel prova em [1] que CB?(Rn,A) age em SA(Rn) por meio de um produto deformado, induzido por uma matriz anti-simétrica, J, como segue: LFg(x)=F×Jg(x) = ?e2?iuvF(x+Ju)g(x+v)dudv, (integral oscilatória). Dizemos que um operador S é Heisenberg-suave se as aplicações z |-> T-zSTz e ? |-> M-?SM?, z,? E Rn, são C? onde Tzg(x)=g(x-z) e M?g(x)=ei?xg(x). No final do capítulo 4 de [1], Rieffel propõe uma conjectura: que todos os operadores \"adjuntáveis\" em SA(Rn), Heisenberg-suaves, que comutam com a representação regular à direita de CB?(Rn,A), RGf = f×JG, são os operadores do tipo LF. Provamos este resultado para o caso A=|C, ver [14], usando a caracterização de Cordes (ver [17]) dos operadores Heisenberg-suaves em L2(Rn) como sendo os operadores pseudo-diferenciais com símbolo em CB?(R2n). Também é provado neste trabalho que, se vale uma generalização natural da caracterização de Cordes, a conjectura de Rieffel é verdadeira. |
| publishDate |
2002 |
| dc.date.none.fl_str_mv |
2002-09-16 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/45/45131/tde-04092003-154149/ |
| url |
http://www.teses.usp.br/teses/disponiveis/45/45131/tde-04092003-154149/ |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1815257860162977792 |