Uma abordagem livre de modelo para rastreamento de objetos em seqüências de imagens.

Detalhes bibliográficos
Ano de defesa: 2007
Autor(a) principal: Bem, Rodrigo Andrade de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/3/3141/tde-13072007-165802/
Resumo: Este trabalho propõe uma abordagem para o rastreamento de objetos observados em seqüências de imagens. O objetivo principal é o desenvolvimento de uma metodologia eficiente, capaz de realizar o rastreamento de um ou mais alvos heterogêneos, usando pouca informação a priori sobre os mesmos. Para alcançar este objetivo é proposta a descrição dos alvos livre de um modelo explícito de forma, através de uma representação baseada em contornos, a qual é interessante pois tem a capacidade de adaptar-se dinamicamente a alvos com formas heterogêneas de modo eficaz. Além disso, é usado um modelo de movimento único e simples, considerando somente translação e mudança de escala quadro a quadro. Este modelo possibilita o tratamento de movimentos suaves e previamente desconhecidos dos alvos. O rastreamento de cada alvo é executado com a combinação de dois Filtros de Kalman: um para estimação do movimento e outro para estimação do contorno. O modelo de observação é baseado em linhas de medida 1D fixadas ao longo do contorno estimado e tem baixo custo computacional. Experimentos foram conduzidos para avaliar a eficácia e eficiência da proposta, utilizando seqüências de imagens controladas e reais. Os resultados mostram que a abordagem proposta é capaz de rastrear alvos distintos (figuras geométricas, pessoas e robôs móveis), executando diferentes movimentos considerando a posição de observação da câmera. Embora haja uma relação crítica entre a variação quadro a quadro do movimento e da forma dos alvos, e o nível de ruído nas imagens, a abordagem é adequada nos casos em que informações detalhadas a respeito do movimento e da forma dos alvos não são disponíveis.
id USP_15652c73fa86dbc683c3c0549cbfd193
oai_identifier_str oai:teses.usp.br:tde-13072007-165802
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Uma abordagem livre de modelo para rastreamento de objetos em seqüências de imagens.A model-free approach for object tracking in sequences of images.Artificial intelligenceComputer visionDigital image processingInteligência artificialProcessamento digital de imagensRastreamento visualVisão computacionalVisual trackingEste trabalho propõe uma abordagem para o rastreamento de objetos observados em seqüências de imagens. O objetivo principal é o desenvolvimento de uma metodologia eficiente, capaz de realizar o rastreamento de um ou mais alvos heterogêneos, usando pouca informação a priori sobre os mesmos. Para alcançar este objetivo é proposta a descrição dos alvos livre de um modelo explícito de forma, através de uma representação baseada em contornos, a qual é interessante pois tem a capacidade de adaptar-se dinamicamente a alvos com formas heterogêneas de modo eficaz. Além disso, é usado um modelo de movimento único e simples, considerando somente translação e mudança de escala quadro a quadro. Este modelo possibilita o tratamento de movimentos suaves e previamente desconhecidos dos alvos. O rastreamento de cada alvo é executado com a combinação de dois Filtros de Kalman: um para estimação do movimento e outro para estimação do contorno. O modelo de observação é baseado em linhas de medida 1D fixadas ao longo do contorno estimado e tem baixo custo computacional. Experimentos foram conduzidos para avaliar a eficácia e eficiência da proposta, utilizando seqüências de imagens controladas e reais. Os resultados mostram que a abordagem proposta é capaz de rastrear alvos distintos (figuras geométricas, pessoas e robôs móveis), executando diferentes movimentos considerando a posição de observação da câmera. Embora haja uma relação crítica entre a variação quadro a quadro do movimento e da forma dos alvos, e o nível de ruído nas imagens, a abordagem é adequada nos casos em que informações detalhadas a respeito do movimento e da forma dos alvos não são disponíveis.This work proposes an approach to track objects observed in sequences of images. The main objective is the development of an efficient methodology, capable of performing the tracking of one or more heterogeneous targets by using a small amount of a priori information about them. To accomplish this objective we propose a description of the targets free of an explicit shape model. This description is a contour-based representation, which is interesting because it is capable of adapting dynamically to targets that have heterogeneous shapes in an effective way. Besides this, a unique and simple movement model is used, considering only translation and scaling frame by frame. This model allows treating smooth and previously unknown targets movements. The tracking of each target is executed by the combination of two Kalman Filters: one used to estimate movement and another one to estimate contour. The observation model is based on 1D measurement lines fixed along the estimated contour and requires low computational power. Experiments were performed to evaluate the efficacy and the efficiency of the proposal, using controlled and real image sequences. Results show that the proposed approach is capable of tracking distinct targets (geometric figures, human bodies and mobile robots), which execute different movements regarding the observation position of the camera. Despite the critical tradeoff between the frame by frame variation of the targets movements and shapes and the level of noise in the images, the approach showed to be adequate for those cases of application where detailed information about target movement and shape are not available.Biblioteca Digitais de Teses e Dissertações da USPReali Costa, Anna HelenaBem, Rodrigo Andrade de2007-03-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/3/3141/tde-13072007-165802/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:51Zoai:teses.usp.br:tde-13072007-165802Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:51Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Uma abordagem livre de modelo para rastreamento de objetos em seqüências de imagens.
A model-free approach for object tracking in sequences of images.
title Uma abordagem livre de modelo para rastreamento de objetos em seqüências de imagens.
spellingShingle Uma abordagem livre de modelo para rastreamento de objetos em seqüências de imagens.
Bem, Rodrigo Andrade de
Artificial intelligence
Computer vision
Digital image processing
Inteligência artificial
Processamento digital de imagens
Rastreamento visual
Visão computacional
Visual tracking
title_short Uma abordagem livre de modelo para rastreamento de objetos em seqüências de imagens.
title_full Uma abordagem livre de modelo para rastreamento de objetos em seqüências de imagens.
title_fullStr Uma abordagem livre de modelo para rastreamento de objetos em seqüências de imagens.
title_full_unstemmed Uma abordagem livre de modelo para rastreamento de objetos em seqüências de imagens.
title_sort Uma abordagem livre de modelo para rastreamento de objetos em seqüências de imagens.
author Bem, Rodrigo Andrade de
author_facet Bem, Rodrigo Andrade de
author_role author
dc.contributor.none.fl_str_mv Reali Costa, Anna Helena
dc.contributor.author.fl_str_mv Bem, Rodrigo Andrade de
dc.subject.por.fl_str_mv Artificial intelligence
Computer vision
Digital image processing
Inteligência artificial
Processamento digital de imagens
Rastreamento visual
Visão computacional
Visual tracking
topic Artificial intelligence
Computer vision
Digital image processing
Inteligência artificial
Processamento digital de imagens
Rastreamento visual
Visão computacional
Visual tracking
description Este trabalho propõe uma abordagem para o rastreamento de objetos observados em seqüências de imagens. O objetivo principal é o desenvolvimento de uma metodologia eficiente, capaz de realizar o rastreamento de um ou mais alvos heterogêneos, usando pouca informação a priori sobre os mesmos. Para alcançar este objetivo é proposta a descrição dos alvos livre de um modelo explícito de forma, através de uma representação baseada em contornos, a qual é interessante pois tem a capacidade de adaptar-se dinamicamente a alvos com formas heterogêneas de modo eficaz. Além disso, é usado um modelo de movimento único e simples, considerando somente translação e mudança de escala quadro a quadro. Este modelo possibilita o tratamento de movimentos suaves e previamente desconhecidos dos alvos. O rastreamento de cada alvo é executado com a combinação de dois Filtros de Kalman: um para estimação do movimento e outro para estimação do contorno. O modelo de observação é baseado em linhas de medida 1D fixadas ao longo do contorno estimado e tem baixo custo computacional. Experimentos foram conduzidos para avaliar a eficácia e eficiência da proposta, utilizando seqüências de imagens controladas e reais. Os resultados mostram que a abordagem proposta é capaz de rastrear alvos distintos (figuras geométricas, pessoas e robôs móveis), executando diferentes movimentos considerando a posição de observação da câmera. Embora haja uma relação crítica entre a variação quadro a quadro do movimento e da forma dos alvos, e o nível de ruído nas imagens, a abordagem é adequada nos casos em que informações detalhadas a respeito do movimento e da forma dos alvos não são disponíveis.
publishDate 2007
dc.date.none.fl_str_mv 2007-03-30
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/3/3141/tde-13072007-165802/
url http://www.teses.usp.br/teses/disponiveis/3/3141/tde-13072007-165802/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258098241110016