Meta-aprendizagem aplicada à classificação de dados de expressão gênica

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: Souza, Bruno Feres de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-04012011-142551/
Resumo: Dentre as aplicações mais comuns envolvendo microarrays, pode-se destacar a classificação de amostras de tecido, essencial para a identificação correta da ocorrência de câncer. Essa classificação é realizada com a ajuda de algoritmos de Aprendizagem de Máquina. A escolha do algoritmo mais adequado para um dado problema não é trivial. Nesta tese de doutorado, estudou-se a utilização de meta-aprendizagem como uma solução viável. Os resultados experimentais atestaram o sucesso da aplicação utilizando um arcabouço padrão para caracterização dos dados e para a construção da recomendação. A partir de então, buscou-se realizar melhorias nesses dois aspectos. Inicialmente, foi proposto um novo conjunto de meta-atributos baseado em índices de validação de agrupamentos. Em seguida, estendeu-se o método de construção de rankings kNN para ponderar a influência dos vizinhos mais próximos. No contexto de meta-regressão, introduziu-se o uso de SVMs para estimar o desempenho de algoritmos de classificação. Árvores de decisão também foram empregadas para a construção da recomendação de algoritmos. Ante seu desempenho inferior, empregou-se um esquema de comitês de árvores, que melhorou sobremaneira a qualidade dos resultados
id USP_15965a5b1e390b5767051ddbcbc34d93
oai_identifier_str oai:teses.usp.br:tde-04012011-142551
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Meta-aprendizagem aplicada à classificação de dados de expressão gênicaMeta-learning applied to gene expression data classificationAprendizagem de máquinaClassificação de dados de expressão gênicaGene expression data classificationMachine learningMeta-aprendizagemMetalearningDentre as aplicações mais comuns envolvendo microarrays, pode-se destacar a classificação de amostras de tecido, essencial para a identificação correta da ocorrência de câncer. Essa classificação é realizada com a ajuda de algoritmos de Aprendizagem de Máquina. A escolha do algoritmo mais adequado para um dado problema não é trivial. Nesta tese de doutorado, estudou-se a utilização de meta-aprendizagem como uma solução viável. Os resultados experimentais atestaram o sucesso da aplicação utilizando um arcabouço padrão para caracterização dos dados e para a construção da recomendação. A partir de então, buscou-se realizar melhorias nesses dois aspectos. Inicialmente, foi proposto um novo conjunto de meta-atributos baseado em índices de validação de agrupamentos. Em seguida, estendeu-se o método de construção de rankings kNN para ponderar a influência dos vizinhos mais próximos. No contexto de meta-regressão, introduziu-se o uso de SVMs para estimar o desempenho de algoritmos de classificação. Árvores de decisão também foram empregadas para a construção da recomendação de algoritmos. Ante seu desempenho inferior, empregou-se um esquema de comitês de árvores, que melhorou sobremaneira a qualidade dos resultadosAmong the most common applications involving microarray, one can highlight the classification of tissue samples, which is essential for the correct identification of the occurrence of cancer and its type. This classification takes place with the aid of machine learning algorithms. Choosing the best algorithm for a given problem is not trivial. In this thesis, we studied the use of meta-learning as a viable solution. The experimental results confirmed the success of the application using a standard framework for characterizing data and constructing the recommendation. Thereafter, some improvements were made in these two aspects. Initially, a new set of meta-attributes was proposed, which are based on cluster validation indices. Then the kNN method for ranking construction was extended to weight the influence of nearest neighbors. In the context of meta-regression, the use of SVMs was introduced to estimate the performance of ranking algorithms. Decision trees were also employed for recommending algorithms. Due to their low performance, a ensemble of trees was employed, which greatly improved the quality of resultsBiblioteca Digitais de Teses e Dissertações da USPCarvalho, André Carlos Ponce de Leon Ferreira deSoares, Carlos Manuel Milheiro de Oliveira PintoSouza, Bruno Feres de2010-10-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-04012011-142551/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:26Zoai:teses.usp.br:tde-04012011-142551Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:26Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Meta-aprendizagem aplicada à classificação de dados de expressão gênica
Meta-learning applied to gene expression data classification
title Meta-aprendizagem aplicada à classificação de dados de expressão gênica
spellingShingle Meta-aprendizagem aplicada à classificação de dados de expressão gênica
Souza, Bruno Feres de
Aprendizagem de máquina
Classificação de dados de expressão gênica
Gene expression data classification
Machine learning
Meta-aprendizagem
Metalearning
title_short Meta-aprendizagem aplicada à classificação de dados de expressão gênica
title_full Meta-aprendizagem aplicada à classificação de dados de expressão gênica
title_fullStr Meta-aprendizagem aplicada à classificação de dados de expressão gênica
title_full_unstemmed Meta-aprendizagem aplicada à classificação de dados de expressão gênica
title_sort Meta-aprendizagem aplicada à classificação de dados de expressão gênica
author Souza, Bruno Feres de
author_facet Souza, Bruno Feres de
author_role author
dc.contributor.none.fl_str_mv Carvalho, André Carlos Ponce de Leon Ferreira de
Soares, Carlos Manuel Milheiro de Oliveira Pinto
dc.contributor.author.fl_str_mv Souza, Bruno Feres de
dc.subject.por.fl_str_mv Aprendizagem de máquina
Classificação de dados de expressão gênica
Gene expression data classification
Machine learning
Meta-aprendizagem
Metalearning
topic Aprendizagem de máquina
Classificação de dados de expressão gênica
Gene expression data classification
Machine learning
Meta-aprendizagem
Metalearning
description Dentre as aplicações mais comuns envolvendo microarrays, pode-se destacar a classificação de amostras de tecido, essencial para a identificação correta da ocorrência de câncer. Essa classificação é realizada com a ajuda de algoritmos de Aprendizagem de Máquina. A escolha do algoritmo mais adequado para um dado problema não é trivial. Nesta tese de doutorado, estudou-se a utilização de meta-aprendizagem como uma solução viável. Os resultados experimentais atestaram o sucesso da aplicação utilizando um arcabouço padrão para caracterização dos dados e para a construção da recomendação. A partir de então, buscou-se realizar melhorias nesses dois aspectos. Inicialmente, foi proposto um novo conjunto de meta-atributos baseado em índices de validação de agrupamentos. Em seguida, estendeu-se o método de construção de rankings kNN para ponderar a influência dos vizinhos mais próximos. No contexto de meta-regressão, introduziu-se o uso de SVMs para estimar o desempenho de algoritmos de classificação. Árvores de decisão também foram empregadas para a construção da recomendação de algoritmos. Ante seu desempenho inferior, empregou-se um esquema de comitês de árvores, que melhorou sobremaneira a qualidade dos resultados
publishDate 2010
dc.date.none.fl_str_mv 2010-10-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55134/tde-04012011-142551/
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-04012011-142551/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257893256036352