Sistema de aprendizado reconfigurável para classificação de dados utilizando processamento paralelo

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Moreira, Eduardo Marmo
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/18/18153/tde-06062014-081516/
Resumo: Esta tese apresenta a arquitetura de um sistema de aprendizado, com um escalonador de tarefas que possibilita a utilização de vários métodos de classificação e validação, permitindo a distribuição dessas tarefas entre os módulos do sistema. Esta arquitetura está estruturada de forma que classificações obtidas através de uma técnica sejam reutilizadas em paralelo pelo mesmo algoritmo ou por outras técnicas, produzindo novas classificações através do refinamento dos resultados alcançados e ampliando o uso em bases de dados com características diferentes. O sistema foi estruturado em quatro partes denominadas, respectivamente, Módulo de Inicialização, Módulo de Validação, Módulo de Refinamento e Módulo Especial de Escalonamento. Em cada módulo, podem ser usados vários algoritmos para atender aos seus objetivos. A estrutura deste sistema permite sua configuração, utilizando diversos métodos, inclusive com técnicas de inteligência artificial. Com isso, é possível a obtenção de resultados mais precisos por meio da escolha do melhor método para cada caso. Os resultados apresentados neste trabalho foram obtidos a partir de bases conhecidas na literatura, o que possibilita comparar as implementações dos métodos tradicionais que foram adicionadas ao sistema e, principalmente, verificar a qualidade dos refinamentos produzidos pela integração de técnicas diferentes. Os resultados demonstram que através de um sistema de aprendizado, minimiza-se a complexidade na análise de grandes bases de dados, permitindo verificar bases com estruturas diferentes e aumentar os métodos aplicados na análise de cada estrutura. Isto favorece a comparação entre os métodos e proporciona resultados mais confiáveis. Para uniformizar os dados provenientes de bases distintas, foi elaborada a modelagem de dados do sistema, o que favorece a escalabilidade do sistema de maneira uniforme.
id USP_16339ece3583feb2d8a5104d6eff5f3f
oai_identifier_str oai:teses.usp.br:tde-06062014-081516
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Sistema de aprendizado reconfigurável para classificação de dados utilizando processamento paraleloReconfigurable learning system for classification of data using parallel processingArtificial intelligenceBanco de dadosClassificação de dadosClusteringData partitioningDatabaseInteligência artificialMachine learningMáquina de aprendizadoParticionamento de dadosSistema de aprendizadoSystem learningEsta tese apresenta a arquitetura de um sistema de aprendizado, com um escalonador de tarefas que possibilita a utilização de vários métodos de classificação e validação, permitindo a distribuição dessas tarefas entre os módulos do sistema. Esta arquitetura está estruturada de forma que classificações obtidas através de uma técnica sejam reutilizadas em paralelo pelo mesmo algoritmo ou por outras técnicas, produzindo novas classificações através do refinamento dos resultados alcançados e ampliando o uso em bases de dados com características diferentes. O sistema foi estruturado em quatro partes denominadas, respectivamente, Módulo de Inicialização, Módulo de Validação, Módulo de Refinamento e Módulo Especial de Escalonamento. Em cada módulo, podem ser usados vários algoritmos para atender aos seus objetivos. A estrutura deste sistema permite sua configuração, utilizando diversos métodos, inclusive com técnicas de inteligência artificial. Com isso, é possível a obtenção de resultados mais precisos por meio da escolha do melhor método para cada caso. Os resultados apresentados neste trabalho foram obtidos a partir de bases conhecidas na literatura, o que possibilita comparar as implementações dos métodos tradicionais que foram adicionadas ao sistema e, principalmente, verificar a qualidade dos refinamentos produzidos pela integração de técnicas diferentes. Os resultados demonstram que através de um sistema de aprendizado, minimiza-se a complexidade na análise de grandes bases de dados, permitindo verificar bases com estruturas diferentes e aumentar os métodos aplicados na análise de cada estrutura. Isto favorece a comparação entre os métodos e proporciona resultados mais confiáveis. Para uniformizar os dados provenientes de bases distintas, foi elaborada a modelagem de dados do sistema, o que favorece a escalabilidade do sistema de maneira uniforme.This thesis presents the architecture of a System Learning with a task scheduler, which makes possible the utilization of several classification and validation methods, allowing the distribution of tasks between the module systems. This architecture is structured of such way that the classifications obtained through a specific technique can be reutilized in parallel by the same algorithm or by other techniques, producing new classifications through the refinement of the results achieved and expanding the use in databases with different characteristics. The system was structured in four parts denominated, respectively, Initialization module; Validation module; Refinement module; and Especial scheduling module. In each module, various algorithms can be employed to reach its objectives. The structure of this system allows its configuration, utilizing various methods, including artificial intelligence techniques. Thus, it is possible to obtain more precise results through the choice of the best method to each case. The results presented in this work were obtained from basis that are known in the literature, which allows to compare the implementations of the traditional methods that were added to the system and, especially, to verify the quality of the refinements produced by the integration of different techniques. The results demonstrated that through a learning system, the complexity of the analysis of great databases is minimized, allowing to verify basis with different structures and to increase the methods applied in the analysis of each structure. It favors the comparison between the methodologies and provides more reliable results. To standardize the data originated of distinct bases, the data modelling system was elaborated, which will favor the uniform scalability of the system.Biblioteca Digitais de Teses e Dissertações da USPMaciel, Carlos DiasOliveira, Suely Pereira deMoreira, Eduardo Marmo2014-05-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/18/18153/tde-06062014-081516/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:49Zoai:teses.usp.br:tde-06062014-081516Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:49Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Sistema de aprendizado reconfigurável para classificação de dados utilizando processamento paralelo
Reconfigurable learning system for classification of data using parallel processing
title Sistema de aprendizado reconfigurável para classificação de dados utilizando processamento paralelo
spellingShingle Sistema de aprendizado reconfigurável para classificação de dados utilizando processamento paralelo
Moreira, Eduardo Marmo
Artificial intelligence
Banco de dados
Classificação de dados
Clustering
Data partitioning
Database
Inteligência artificial
Machine learning
Máquina de aprendizado
Particionamento de dados
Sistema de aprendizado
System learning
title_short Sistema de aprendizado reconfigurável para classificação de dados utilizando processamento paralelo
title_full Sistema de aprendizado reconfigurável para classificação de dados utilizando processamento paralelo
title_fullStr Sistema de aprendizado reconfigurável para classificação de dados utilizando processamento paralelo
title_full_unstemmed Sistema de aprendizado reconfigurável para classificação de dados utilizando processamento paralelo
title_sort Sistema de aprendizado reconfigurável para classificação de dados utilizando processamento paralelo
author Moreira, Eduardo Marmo
author_facet Moreira, Eduardo Marmo
author_role author
dc.contributor.none.fl_str_mv Maciel, Carlos Dias
Oliveira, Suely Pereira de
dc.contributor.author.fl_str_mv Moreira, Eduardo Marmo
dc.subject.por.fl_str_mv Artificial intelligence
Banco de dados
Classificação de dados
Clustering
Data partitioning
Database
Inteligência artificial
Machine learning
Máquina de aprendizado
Particionamento de dados
Sistema de aprendizado
System learning
topic Artificial intelligence
Banco de dados
Classificação de dados
Clustering
Data partitioning
Database
Inteligência artificial
Machine learning
Máquina de aprendizado
Particionamento de dados
Sistema de aprendizado
System learning
description Esta tese apresenta a arquitetura de um sistema de aprendizado, com um escalonador de tarefas que possibilita a utilização de vários métodos de classificação e validação, permitindo a distribuição dessas tarefas entre os módulos do sistema. Esta arquitetura está estruturada de forma que classificações obtidas através de uma técnica sejam reutilizadas em paralelo pelo mesmo algoritmo ou por outras técnicas, produzindo novas classificações através do refinamento dos resultados alcançados e ampliando o uso em bases de dados com características diferentes. O sistema foi estruturado em quatro partes denominadas, respectivamente, Módulo de Inicialização, Módulo de Validação, Módulo de Refinamento e Módulo Especial de Escalonamento. Em cada módulo, podem ser usados vários algoritmos para atender aos seus objetivos. A estrutura deste sistema permite sua configuração, utilizando diversos métodos, inclusive com técnicas de inteligência artificial. Com isso, é possível a obtenção de resultados mais precisos por meio da escolha do melhor método para cada caso. Os resultados apresentados neste trabalho foram obtidos a partir de bases conhecidas na literatura, o que possibilita comparar as implementações dos métodos tradicionais que foram adicionadas ao sistema e, principalmente, verificar a qualidade dos refinamentos produzidos pela integração de técnicas diferentes. Os resultados demonstram que através de um sistema de aprendizado, minimiza-se a complexidade na análise de grandes bases de dados, permitindo verificar bases com estruturas diferentes e aumentar os métodos aplicados na análise de cada estrutura. Isto favorece a comparação entre os métodos e proporciona resultados mais confiáveis. Para uniformizar os dados provenientes de bases distintas, foi elaborada a modelagem de dados do sistema, o que favorece a escalabilidade do sistema de maneira uniforme.
publishDate 2014
dc.date.none.fl_str_mv 2014-05-07
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/18/18153/tde-06062014-081516/
url http://www.teses.usp.br/teses/disponiveis/18/18153/tde-06062014-081516/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257900814172160