Estudo do efeito de suavização da krigagem ordinária em diferentes distribuições estatísticas
| Ano de defesa: | 2007 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.teses.usp.br/teses/disponiveis/44/44137/tde-31072007-150731/ |
Resumo: | Esta dissertação apresenta os resultados da investigação quanto à eficácia do algoritmo de pós-processamento para a correção do efeito de suavização nas estimativas da krigagem ordinária. Foram consideradas três distribuições estatísticas distintas: gaussiana, lognormal e lognormal invertida. Como se sabe, dentre estas distribuições, a distribuição lognormal é a mais difícil de trabalhar, já que neste tipo de distribuição apresenta um grande número de valores baixos e um pequeno número de valores altos, sendo estes responsáveis pela grande variabilidade do conjunto de dados. Além da distribuição estatística, outros parâmetros foram considerados: a influencia do tamanho da amostra e o numero de pontos da vizinhança. Para distribuições gaussianas e lognormais invertidas o algoritmo de pós-processamento funcionou bem em todas a situações. Porém, para a distribuição lognormal, foi observada a perda de precisão global. Desta forma, aplicou-se a krigagem ordinária lognormal para este tipo de distribuição, na realidade, também foi aplicado um método recém proposto de transformada reversa de estimativas por krigagem lognormal. Esta técnica é baseada na correção do histograma das estimativas da krigagem lognormal e, então, faz-se a transformada reversa dos dados. Os resultados desta transformada reversa sempre se mostraram melhores do que os resultados da técnica clássica. Além disto, a as estimativas de krigagem lognormal se provaram superiores às estimativas por krigagem ordinária. |
| id |
USP_16ad4df9fa6f925d9407977099d0ba10 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-31072007-150731 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Estudo do efeito de suavização da krigagem ordinária em diferentes distribuições estatísticasA study of ordinary kriging smoothing effect using diferent statistics distributionsEfeito de suavizaçãoGeoestatísticaGeostatisticsKrigagem ordináriaOrdinary krigingSmoothing efectEsta dissertação apresenta os resultados da investigação quanto à eficácia do algoritmo de pós-processamento para a correção do efeito de suavização nas estimativas da krigagem ordinária. Foram consideradas três distribuições estatísticas distintas: gaussiana, lognormal e lognormal invertida. Como se sabe, dentre estas distribuições, a distribuição lognormal é a mais difícil de trabalhar, já que neste tipo de distribuição apresenta um grande número de valores baixos e um pequeno número de valores altos, sendo estes responsáveis pela grande variabilidade do conjunto de dados. Além da distribuição estatística, outros parâmetros foram considerados: a influencia do tamanho da amostra e o numero de pontos da vizinhança. Para distribuições gaussianas e lognormais invertidas o algoritmo de pós-processamento funcionou bem em todas a situações. Porém, para a distribuição lognormal, foi observada a perda de precisão global. Desta forma, aplicou-se a krigagem ordinária lognormal para este tipo de distribuição, na realidade, também foi aplicado um método recém proposto de transformada reversa de estimativas por krigagem lognormal. Esta técnica é baseada na correção do histograma das estimativas da krigagem lognormal e, então, faz-se a transformada reversa dos dados. Os resultados desta transformada reversa sempre se mostraram melhores do que os resultados da técnica clássica. Além disto, a as estimativas de krigagem lognormal se provaram superiores às estimativas por krigagem ordinária.This dissertation presents the results of an investigation into the effectiveness of the post-processing algorithm for correcting the smoothing effect of ordinary kriging estimates. Three different statistical distributions have been considered in this study: gaussian, lognormal and inverted lognormal. As we know among these distributions, the lognormal distribution is the most difficult one to handle, because this distribution presents a great number of low values and a few high values in which these high values are responsible for the great variability of the data set. Besides statistical distribution other parameters have been considered in this study: the influence of the sample size and the number of neighbor data points as well. For gaussian and inverted lognormal distributions the post-processing algorithm worked well in all situations. However, it was observed loss of local accuracy for lognormal data. Thus, for these data the technique of ordinary lognormal kriging was applied. Actually, a recently proposed approach for backtransforming lognormal kriging estimates was also applied. This approach is based on correcting the histogram of lognormal kriging estimates and then backtransforming it to the original scale of measurement. Results of back-transformed lognormal kriging estimates were always better than the traditional approach. Furthermore, lognormal kriging estimates have provided better results than the normal kriging ones.Biblioteca Digitais de Teses e Dissertações da USPYamamoto, Jorge KazuoSouza, Anelise de Lima2007-07-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/44/44137/tde-31072007-150731/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:51Zoai:teses.usp.br:tde-31072007-150731Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:51Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Estudo do efeito de suavização da krigagem ordinária em diferentes distribuições estatísticas A study of ordinary kriging smoothing effect using diferent statistics distributions |
| title |
Estudo do efeito de suavização da krigagem ordinária em diferentes distribuições estatísticas |
| spellingShingle |
Estudo do efeito de suavização da krigagem ordinária em diferentes distribuições estatísticas Souza, Anelise de Lima Efeito de suavização Geoestatística Geostatistics Krigagem ordinária Ordinary kriging Smoothing efect |
| title_short |
Estudo do efeito de suavização da krigagem ordinária em diferentes distribuições estatísticas |
| title_full |
Estudo do efeito de suavização da krigagem ordinária em diferentes distribuições estatísticas |
| title_fullStr |
Estudo do efeito de suavização da krigagem ordinária em diferentes distribuições estatísticas |
| title_full_unstemmed |
Estudo do efeito de suavização da krigagem ordinária em diferentes distribuições estatísticas |
| title_sort |
Estudo do efeito de suavização da krigagem ordinária em diferentes distribuições estatísticas |
| author |
Souza, Anelise de Lima |
| author_facet |
Souza, Anelise de Lima |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Yamamoto, Jorge Kazuo |
| dc.contributor.author.fl_str_mv |
Souza, Anelise de Lima |
| dc.subject.por.fl_str_mv |
Efeito de suavização Geoestatística Geostatistics Krigagem ordinária Ordinary kriging Smoothing efect |
| topic |
Efeito de suavização Geoestatística Geostatistics Krigagem ordinária Ordinary kriging Smoothing efect |
| description |
Esta dissertação apresenta os resultados da investigação quanto à eficácia do algoritmo de pós-processamento para a correção do efeito de suavização nas estimativas da krigagem ordinária. Foram consideradas três distribuições estatísticas distintas: gaussiana, lognormal e lognormal invertida. Como se sabe, dentre estas distribuições, a distribuição lognormal é a mais difícil de trabalhar, já que neste tipo de distribuição apresenta um grande número de valores baixos e um pequeno número de valores altos, sendo estes responsáveis pela grande variabilidade do conjunto de dados. Além da distribuição estatística, outros parâmetros foram considerados: a influencia do tamanho da amostra e o numero de pontos da vizinhança. Para distribuições gaussianas e lognormais invertidas o algoritmo de pós-processamento funcionou bem em todas a situações. Porém, para a distribuição lognormal, foi observada a perda de precisão global. Desta forma, aplicou-se a krigagem ordinária lognormal para este tipo de distribuição, na realidade, também foi aplicado um método recém proposto de transformada reversa de estimativas por krigagem lognormal. Esta técnica é baseada na correção do histograma das estimativas da krigagem lognormal e, então, faz-se a transformada reversa dos dados. Os resultados desta transformada reversa sempre se mostraram melhores do que os resultados da técnica clássica. Além disto, a as estimativas de krigagem lognormal se provaram superiores às estimativas por krigagem ordinária. |
| publishDate |
2007 |
| dc.date.none.fl_str_mv |
2007-07-12 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/44/44137/tde-31072007-150731/ |
| url |
http://www.teses.usp.br/teses/disponiveis/44/44137/tde-31072007-150731/ |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1815258603377917952 |