Estudo do efeito de suavização da krigagem ordinária em diferentes distribuições estatísticas

Detalhes bibliográficos
Ano de defesa: 2007
Autor(a) principal: Souza, Anelise de Lima
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/44/44137/tde-31072007-150731/
Resumo: Esta dissertação apresenta os resultados da investigação quanto à eficácia do algoritmo de pós-processamento para a correção do efeito de suavização nas estimativas da krigagem ordinária. Foram consideradas três distribuições estatísticas distintas: gaussiana, lognormal e lognormal invertida. Como se sabe, dentre estas distribuições, a distribuição lognormal é a mais difícil de trabalhar, já que neste tipo de distribuição apresenta um grande número de valores baixos e um pequeno número de valores altos, sendo estes responsáveis pela grande variabilidade do conjunto de dados. Além da distribuição estatística, outros parâmetros foram considerados: a influencia do tamanho da amostra e o numero de pontos da vizinhança. Para distribuições gaussianas e lognormais invertidas o algoritmo de pós-processamento funcionou bem em todas a situações. Porém, para a distribuição lognormal, foi observada a perda de precisão global. Desta forma, aplicou-se a krigagem ordinária lognormal para este tipo de distribuição, na realidade, também foi aplicado um método recém proposto de transformada reversa de estimativas por krigagem lognormal. Esta técnica é baseada na correção do histograma das estimativas da krigagem lognormal e, então, faz-se a transformada reversa dos dados. Os resultados desta transformada reversa sempre se mostraram melhores do que os resultados da técnica clássica. Além disto, a as estimativas de krigagem lognormal se provaram superiores às estimativas por krigagem ordinária.
id USP_16ad4df9fa6f925d9407977099d0ba10
oai_identifier_str oai:teses.usp.br:tde-31072007-150731
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Estudo do efeito de suavização da krigagem ordinária em diferentes distribuições estatísticasA study of ordinary kriging smoothing effect using diferent statistics distributionsEfeito de suavizaçãoGeoestatísticaGeostatisticsKrigagem ordináriaOrdinary krigingSmoothing efectEsta dissertação apresenta os resultados da investigação quanto à eficácia do algoritmo de pós-processamento para a correção do efeito de suavização nas estimativas da krigagem ordinária. Foram consideradas três distribuições estatísticas distintas: gaussiana, lognormal e lognormal invertida. Como se sabe, dentre estas distribuições, a distribuição lognormal é a mais difícil de trabalhar, já que neste tipo de distribuição apresenta um grande número de valores baixos e um pequeno número de valores altos, sendo estes responsáveis pela grande variabilidade do conjunto de dados. Além da distribuição estatística, outros parâmetros foram considerados: a influencia do tamanho da amostra e o numero de pontos da vizinhança. Para distribuições gaussianas e lognormais invertidas o algoritmo de pós-processamento funcionou bem em todas a situações. Porém, para a distribuição lognormal, foi observada a perda de precisão global. Desta forma, aplicou-se a krigagem ordinária lognormal para este tipo de distribuição, na realidade, também foi aplicado um método recém proposto de transformada reversa de estimativas por krigagem lognormal. Esta técnica é baseada na correção do histograma das estimativas da krigagem lognormal e, então, faz-se a transformada reversa dos dados. Os resultados desta transformada reversa sempre se mostraram melhores do que os resultados da técnica clássica. Além disto, a as estimativas de krigagem lognormal se provaram superiores às estimativas por krigagem ordinária.This dissertation presents the results of an investigation into the effectiveness of the post-processing algorithm for correcting the smoothing effect of ordinary kriging estimates. Three different statistical distributions have been considered in this study: gaussian, lognormal and inverted lognormal. As we know among these distributions, the lognormal distribution is the most difficult one to handle, because this distribution presents a great number of low values and a few high values in which these high values are responsible for the great variability of the data set. Besides statistical distribution other parameters have been considered in this study: the influence of the sample size and the number of neighbor data points as well. For gaussian and inverted lognormal distributions the post-processing algorithm worked well in all situations. However, it was observed loss of local accuracy for lognormal data. Thus, for these data the technique of ordinary lognormal kriging was applied. Actually, a recently proposed approach for backtransforming lognormal kriging estimates was also applied. This approach is based on correcting the histogram of lognormal kriging estimates and then backtransforming it to the original scale of measurement. Results of back-transformed lognormal kriging estimates were always better than the traditional approach. Furthermore, lognormal kriging estimates have provided better results than the normal kriging ones.Biblioteca Digitais de Teses e Dissertações da USPYamamoto, Jorge KazuoSouza, Anelise de Lima2007-07-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/44/44137/tde-31072007-150731/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:51Zoai:teses.usp.br:tde-31072007-150731Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:51Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Estudo do efeito de suavização da krigagem ordinária em diferentes distribuições estatísticas
A study of ordinary kriging smoothing effect using diferent statistics distributions
title Estudo do efeito de suavização da krigagem ordinária em diferentes distribuições estatísticas
spellingShingle Estudo do efeito de suavização da krigagem ordinária em diferentes distribuições estatísticas
Souza, Anelise de Lima
Efeito de suavização
Geoestatística
Geostatistics
Krigagem ordinária
Ordinary kriging
Smoothing efect
title_short Estudo do efeito de suavização da krigagem ordinária em diferentes distribuições estatísticas
title_full Estudo do efeito de suavização da krigagem ordinária em diferentes distribuições estatísticas
title_fullStr Estudo do efeito de suavização da krigagem ordinária em diferentes distribuições estatísticas
title_full_unstemmed Estudo do efeito de suavização da krigagem ordinária em diferentes distribuições estatísticas
title_sort Estudo do efeito de suavização da krigagem ordinária em diferentes distribuições estatísticas
author Souza, Anelise de Lima
author_facet Souza, Anelise de Lima
author_role author
dc.contributor.none.fl_str_mv Yamamoto, Jorge Kazuo
dc.contributor.author.fl_str_mv Souza, Anelise de Lima
dc.subject.por.fl_str_mv Efeito de suavização
Geoestatística
Geostatistics
Krigagem ordinária
Ordinary kriging
Smoothing efect
topic Efeito de suavização
Geoestatística
Geostatistics
Krigagem ordinária
Ordinary kriging
Smoothing efect
description Esta dissertação apresenta os resultados da investigação quanto à eficácia do algoritmo de pós-processamento para a correção do efeito de suavização nas estimativas da krigagem ordinária. Foram consideradas três distribuições estatísticas distintas: gaussiana, lognormal e lognormal invertida. Como se sabe, dentre estas distribuições, a distribuição lognormal é a mais difícil de trabalhar, já que neste tipo de distribuição apresenta um grande número de valores baixos e um pequeno número de valores altos, sendo estes responsáveis pela grande variabilidade do conjunto de dados. Além da distribuição estatística, outros parâmetros foram considerados: a influencia do tamanho da amostra e o numero de pontos da vizinhança. Para distribuições gaussianas e lognormais invertidas o algoritmo de pós-processamento funcionou bem em todas a situações. Porém, para a distribuição lognormal, foi observada a perda de precisão global. Desta forma, aplicou-se a krigagem ordinária lognormal para este tipo de distribuição, na realidade, também foi aplicado um método recém proposto de transformada reversa de estimativas por krigagem lognormal. Esta técnica é baseada na correção do histograma das estimativas da krigagem lognormal e, então, faz-se a transformada reversa dos dados. Os resultados desta transformada reversa sempre se mostraram melhores do que os resultados da técnica clássica. Além disto, a as estimativas de krigagem lognormal se provaram superiores às estimativas por krigagem ordinária.
publishDate 2007
dc.date.none.fl_str_mv 2007-07-12
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/44/44137/tde-31072007-150731/
url http://www.teses.usp.br/teses/disponiveis/44/44137/tde-31072007-150731/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258603377917952