Multi-Agent Interaction-Aware Trajectory Prediction based on Behavior Intention for Autonomous Vehicle in Urban Scenarios

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Gomes, Iago Pacheco
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-02122024-095408/
Resumo: Autonomous vehicles have the potential to transform urban transport by increasing efficiency, accessibility, and safety while reducing environmental impact. These vehicles use various components to understand the external environment, assess their own state, and interact with other traffic participants. To navigate safely, they employ algorithms for detecting, classifying, and avoiding obstacles. However, merely detecting the position of an obstacle is insufficient for ensuring safety in dynamic urban traffic. Therefore, behavior or intention prediction, and trajectory prediction of these agents are essential. These capabilities enable decision-making and path-planning algorithms to anticipate possible collisions or dangerous situations by considering likely scenarios. The trajectory prediction field encompasses approaches that consider agents motion equations, maneuver intentions, and interactions among traffic participants. Modeling these interactions is particularly challenging due to the complexity of factors influencing each drivers actions, such as psychological factors, driving experience, traffic rules, safety consid- erations, and the actions of surrounding drivers. This dissertation investigates and proposes a novel Multi-Agent Interaction-Aware Trajectory Prediction (MAIATP) framework comprising five components: Road Geometry Modeling, which uses Birds Eye View images to represent global and local features; Driving Style Recognition, that classifies drivers as calm, moder- ate, or aggressive using an Interval Type-2 Fuzzy Inference System with Fuzzy Multi-Experts Decision-Making; Interaction Modeling, that employs a novel graph neural network called the Graph Mixture of Experts Attention Network (GMEAN), which uses prior behavior estimates to weight attention scores; Multi-Agent Interaction-Aware Behavior Intention Prediction, that estimates the lateral and longitudinal behaviors of vehicles and pedestrians, considering their interactions; and, finally, the Trajectory Prediction module, which uses a Conditional Variational Autoencoder (CVAE) to explicitly model the conditional variables inherent to agent behavior in traffic scenarios. The theoretical exploration and experimental validation of these components highlight the importance of interaction in predicting behavior intention and trajectory. The results also demonstrate the advantages of explicitly modeling conditional variables. Finally, this dissertation also addresses the challenges of multimodal prediction, including the imbalanced nature of datasets and the complexity of developing a multi-agent trajectory prediction model for heterogeneous traffic scenarios.
id USP_1841cda66c9db95e684231011683f72c
oai_identifier_str oai:teses.usp.br:tde-02122024-095408
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Multi-Agent Interaction-Aware Trajectory Prediction based on Behavior Intention for Autonomous Vehicle in Urban ScenariosPredição de Trajetória de Múltiplos Agentes baseada em Interação e Intenções de Comportamento para Veículos Autônomos em Ambientes UrbanosAutonomous vehiclesBehavior intention predictionDriving stylesEstilo de direçãoInteraçãoInteractionPredição de intenção de comportamentoPredição de trajetóriaTrajectory predictionVeículos autônomosAutonomous vehicles have the potential to transform urban transport by increasing efficiency, accessibility, and safety while reducing environmental impact. These vehicles use various components to understand the external environment, assess their own state, and interact with other traffic participants. To navigate safely, they employ algorithms for detecting, classifying, and avoiding obstacles. However, merely detecting the position of an obstacle is insufficient for ensuring safety in dynamic urban traffic. Therefore, behavior or intention prediction, and trajectory prediction of these agents are essential. These capabilities enable decision-making and path-planning algorithms to anticipate possible collisions or dangerous situations by considering likely scenarios. The trajectory prediction field encompasses approaches that consider agents motion equations, maneuver intentions, and interactions among traffic participants. Modeling these interactions is particularly challenging due to the complexity of factors influencing each drivers actions, such as psychological factors, driving experience, traffic rules, safety consid- erations, and the actions of surrounding drivers. This dissertation investigates and proposes a novel Multi-Agent Interaction-Aware Trajectory Prediction (MAIATP) framework comprising five components: Road Geometry Modeling, which uses Birds Eye View images to represent global and local features; Driving Style Recognition, that classifies drivers as calm, moder- ate, or aggressive using an Interval Type-2 Fuzzy Inference System with Fuzzy Multi-Experts Decision-Making; Interaction Modeling, that employs a novel graph neural network called the Graph Mixture of Experts Attention Network (GMEAN), which uses prior behavior estimates to weight attention scores; Multi-Agent Interaction-Aware Behavior Intention Prediction, that estimates the lateral and longitudinal behaviors of vehicles and pedestrians, considering their interactions; and, finally, the Trajectory Prediction module, which uses a Conditional Variational Autoencoder (CVAE) to explicitly model the conditional variables inherent to agent behavior in traffic scenarios. The theoretical exploration and experimental validation of these components highlight the importance of interaction in predicting behavior intention and trajectory. The results also demonstrate the advantages of explicitly modeling conditional variables. Finally, this dissertation also addresses the challenges of multimodal prediction, including the imbalanced nature of datasets and the complexity of developing a multi-agent trajectory prediction model for heterogeneous traffic scenarios.Os veículos autônomos têm o potencial de transformar o transporte urbano, aumentando a eficiência, acessibilidade e segurança, enquanto reduzem o impacto ambiental. Esses veículos utilizam vários componentes para entender o ambiente externo, avaliar seu próprio estado e interagir com outros participantes do tráfego. Para navegar com segurança, eles empregam algoritmos para detectar, classificar e evitar obstáculos. No entanto, apenas detectar a posição de um obstáculo é insuficiente para garantir a segurança no trânsito. Portanto, a predição de intenção de comportamento e de trajetória desses agentes são essenciais. Essas capacidades permitem que os algoritmos de tomada de decisão e de planejamento de rota antecipem situações perigosas ao considerar cenários prováveis. A área de predição de trajetória abrange abordagens que consideram os movimento dos agentes, suas intenções de manobra e suas interações. Modelar essas interações é particularmente desafiador devido à complexidade dos fatores que influenciam as ações de cada agente, como fatores psicológicos, experiência de condução, regras de trânsito, considerações de segurança e as ações dos motoristas ao redor. Esta tese investiga e propõe uma nova abordagem de Predição Multi-Agente de Trajetória (MAIATP), que é composta de cinco componentes: Modelagem da Geometria da Ruas, que usa imagens de visão aérea para representar características globais e locais; Reconhecimento de Estilo de Direção, que classifica os motoristas como calmos, moderados ou agressivos usando um Sistema de Inferência Fuzzy Intervalar Tipo-2 com Tomada de Decisão por Múltiplos Especialistas Fuzzy; Modelagem de Interação, que emprega uma nova rede neural para grafos, chamada de Graph Mixture of Experts Attention Network (GMEAN), que usa estimativas de comportamento prévias para ponderar os escores de atenção; Previsão de Intenção de Comportamento, que estima os comportamentos laterais e longitudinais de veículos e pedestres, considerando suas interações; e, finalmente, o módulo de Predição de Trajetória, que usa um Autoencoder Variacional Condicional (CVAE) para modelar explicitamente as variáveis condicionais inerentes ao comportamento dos agentes em cenários de tráfego. A exploração teórica e a validação experimental desses componentes destacam a importância da interação para a predição de intenção de comportamento e de trajetória. Os resultados também demonstram as vantagens de modelar explicitamente as variáveis condicionais. Por fim, a tese também abordada os desafios da predição multimodal, incluindo a natureza desbalanceada dos conjuntos de dados e a complexidade de desenvolver um modelo de predição de trajetória multi-agente para cenários de tráfego heterogêneos.Biblioteca Digitais de Teses e Dissertações da USPWolf, Denis FernandoGomes, Iago Pacheco2024-08-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-02122024-095408/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-12-02T12:08:02Zoai:teses.usp.br:tde-02122024-095408Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-12-02T12:08:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Multi-Agent Interaction-Aware Trajectory Prediction based on Behavior Intention for Autonomous Vehicle in Urban Scenarios
Predição de Trajetória de Múltiplos Agentes baseada em Interação e Intenções de Comportamento para Veículos Autônomos em Ambientes Urbanos
title Multi-Agent Interaction-Aware Trajectory Prediction based on Behavior Intention for Autonomous Vehicle in Urban Scenarios
spellingShingle Multi-Agent Interaction-Aware Trajectory Prediction based on Behavior Intention for Autonomous Vehicle in Urban Scenarios
Gomes, Iago Pacheco
Autonomous vehicles
Behavior intention prediction
Driving styles
Estilo de direção
Interação
Interaction
Predição de intenção de comportamento
Predição de trajetória
Trajectory prediction
Veículos autônomos
title_short Multi-Agent Interaction-Aware Trajectory Prediction based on Behavior Intention for Autonomous Vehicle in Urban Scenarios
title_full Multi-Agent Interaction-Aware Trajectory Prediction based on Behavior Intention for Autonomous Vehicle in Urban Scenarios
title_fullStr Multi-Agent Interaction-Aware Trajectory Prediction based on Behavior Intention for Autonomous Vehicle in Urban Scenarios
title_full_unstemmed Multi-Agent Interaction-Aware Trajectory Prediction based on Behavior Intention for Autonomous Vehicle in Urban Scenarios
title_sort Multi-Agent Interaction-Aware Trajectory Prediction based on Behavior Intention for Autonomous Vehicle in Urban Scenarios
author Gomes, Iago Pacheco
author_facet Gomes, Iago Pacheco
author_role author
dc.contributor.none.fl_str_mv Wolf, Denis Fernando
dc.contributor.author.fl_str_mv Gomes, Iago Pacheco
dc.subject.por.fl_str_mv Autonomous vehicles
Behavior intention prediction
Driving styles
Estilo de direção
Interação
Interaction
Predição de intenção de comportamento
Predição de trajetória
Trajectory prediction
Veículos autônomos
topic Autonomous vehicles
Behavior intention prediction
Driving styles
Estilo de direção
Interação
Interaction
Predição de intenção de comportamento
Predição de trajetória
Trajectory prediction
Veículos autônomos
description Autonomous vehicles have the potential to transform urban transport by increasing efficiency, accessibility, and safety while reducing environmental impact. These vehicles use various components to understand the external environment, assess their own state, and interact with other traffic participants. To navigate safely, they employ algorithms for detecting, classifying, and avoiding obstacles. However, merely detecting the position of an obstacle is insufficient for ensuring safety in dynamic urban traffic. Therefore, behavior or intention prediction, and trajectory prediction of these agents are essential. These capabilities enable decision-making and path-planning algorithms to anticipate possible collisions or dangerous situations by considering likely scenarios. The trajectory prediction field encompasses approaches that consider agents motion equations, maneuver intentions, and interactions among traffic participants. Modeling these interactions is particularly challenging due to the complexity of factors influencing each drivers actions, such as psychological factors, driving experience, traffic rules, safety consid- erations, and the actions of surrounding drivers. This dissertation investigates and proposes a novel Multi-Agent Interaction-Aware Trajectory Prediction (MAIATP) framework comprising five components: Road Geometry Modeling, which uses Birds Eye View images to represent global and local features; Driving Style Recognition, that classifies drivers as calm, moder- ate, or aggressive using an Interval Type-2 Fuzzy Inference System with Fuzzy Multi-Experts Decision-Making; Interaction Modeling, that employs a novel graph neural network called the Graph Mixture of Experts Attention Network (GMEAN), which uses prior behavior estimates to weight attention scores; Multi-Agent Interaction-Aware Behavior Intention Prediction, that estimates the lateral and longitudinal behaviors of vehicles and pedestrians, considering their interactions; and, finally, the Trajectory Prediction module, which uses a Conditional Variational Autoencoder (CVAE) to explicitly model the conditional variables inherent to agent behavior in traffic scenarios. The theoretical exploration and experimental validation of these components highlight the importance of interaction in predicting behavior intention and trajectory. The results also demonstrate the advantages of explicitly modeling conditional variables. Finally, this dissertation also addresses the challenges of multimodal prediction, including the imbalanced nature of datasets and the complexity of developing a multi-agent trajectory prediction model for heterogeneous traffic scenarios.
publishDate 2024
dc.date.none.fl_str_mv 2024-08-16
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/55/55134/tde-02122024-095408/
url https://www.teses.usp.br/teses/disponiveis/55/55134/tde-02122024-095408/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1818598500940644352