Diagnóstico e prognóstico de eventos extremos de precipitação nas bacias hidrográficas do Rio São Francisco e do Rio Grande

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Siqueira, Nayara Arroxelas dos Santos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/14/14133/tde-07072022-140843/
Resumo: O objetivo desse trabalho foi o de avaliar a climatologia das Bacias do Rio Grande e Rio São Francisco por meio de análises estatísticas e prognóstico de precipitação por meio de Redes Neurais Artificiais. Utilizaram-se, para tal, dados de precipitação nas bacias, Índices Climáticos de Oscilação Decenal do Pacífico, Índice Oceânico de Niños, Oscilação Multidecenal do Atlântico, Oscilação do Atlântico Norte, Dipolo do Atlântico e Ciclo de Manchas Solares para um período de 65 anos. Os dados de precipitação foram filtrados com preenchimento de falhas por meio do método de ponderação regional. Analisou-se o comportamento da precipitação ao longo do tempo e verificou-se a relação de resultados da média climatológica e do boxplot. O Índice de Precipitação Padronizada da Bacia do Rio Grande mostrou que, nos últimos cinco anos, o período seco foi menos seco em relação aos períodos anteriores. Por outro lado, na Bacia do Rio São Francisco manteve um padrão de precipitação ao longo da série temporal de precipitação. A Análise de Agrupamento identificou cinco regiões homogêneas na Bacia do Rio Grande por meio da análise de componentes principais que explicam 86% da variância total da chuva média mensal de 174 postos pluviométricos e, quatro regiões homogêneas na Bacia do Rio São Francisco com 87% da variância total da chuva média mensal de 199 postos pluviométricos. A análise de ondeletas cruzadas indicou uma relação entre a precipitação e os índices climáticos na Bacia do Rio São Francisco, caracterizada por distribuição espaço-temporal de precipitação heterogênea devido à sua posição e extensão geográfica, com diferentes regimes de precipitação. A bacia do Rio Grande foi caracterizada por regimes homogêneos de precipitação. Os prognósticos por meio do método auto-regressivo integrado de médias móveis (ARIMA) e redes neurais artificiais (RNAs) indicaram que esse último apresentou desempenho melhor, além de contribuir para melhorar as análises climatológicas. Porém, nenhum dos métodos foi capaz de atingir um resultado satisfatório de relação causa e efeito entre os índices climáticos e a precipitação nas bacias hidrográficas. Mostrando que a interação entre os oceanos e atmosfera e a chuva é mais complexa. Contudo, estudos futuros podem melhorar os resultados obtidos.
id USP_18edb95ec70a3ee5af393b043f72fef3
oai_identifier_str oai:teses.usp.br:tde-07072022-140843
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Diagnóstico e prognóstico de eventos extremos de precipitação nas bacias hidrográficas do Rio São Francisco e do Rio GrandeDiagnosis and Prognosis of Precipitation Extremes in São Francisco and Grande Rivers BasinsClimatologiaClimatologyHidrometeorologiaHydrometeorologyMétodos Estatísticos e Análise Espectral.Statistical Methods and Spectral Analysis.O objetivo desse trabalho foi o de avaliar a climatologia das Bacias do Rio Grande e Rio São Francisco por meio de análises estatísticas e prognóstico de precipitação por meio de Redes Neurais Artificiais. Utilizaram-se, para tal, dados de precipitação nas bacias, Índices Climáticos de Oscilação Decenal do Pacífico, Índice Oceânico de Niños, Oscilação Multidecenal do Atlântico, Oscilação do Atlântico Norte, Dipolo do Atlântico e Ciclo de Manchas Solares para um período de 65 anos. Os dados de precipitação foram filtrados com preenchimento de falhas por meio do método de ponderação regional. Analisou-se o comportamento da precipitação ao longo do tempo e verificou-se a relação de resultados da média climatológica e do boxplot. O Índice de Precipitação Padronizada da Bacia do Rio Grande mostrou que, nos últimos cinco anos, o período seco foi menos seco em relação aos períodos anteriores. Por outro lado, na Bacia do Rio São Francisco manteve um padrão de precipitação ao longo da série temporal de precipitação. A Análise de Agrupamento identificou cinco regiões homogêneas na Bacia do Rio Grande por meio da análise de componentes principais que explicam 86% da variância total da chuva média mensal de 174 postos pluviométricos e, quatro regiões homogêneas na Bacia do Rio São Francisco com 87% da variância total da chuva média mensal de 199 postos pluviométricos. A análise de ondeletas cruzadas indicou uma relação entre a precipitação e os índices climáticos na Bacia do Rio São Francisco, caracterizada por distribuição espaço-temporal de precipitação heterogênea devido à sua posição e extensão geográfica, com diferentes regimes de precipitação. A bacia do Rio Grande foi caracterizada por regimes homogêneos de precipitação. Os prognósticos por meio do método auto-regressivo integrado de médias móveis (ARIMA) e redes neurais artificiais (RNAs) indicaram que esse último apresentou desempenho melhor, além de contribuir para melhorar as análises climatológicas. Porém, nenhum dos métodos foi capaz de atingir um resultado satisfatório de relação causa e efeito entre os índices climáticos e a precipitação nas bacias hidrográficas. Mostrando que a interação entre os oceanos e atmosfera e a chuva é mais complexa. Contudo, estudos futuros podem melhorar os resultados obtidos.The objective of this work was to evaluate the climatology of the Grande and São Francisco Rivers Basins through statistical analysis and precipitation forecasting using Artificial Neural Networks. Precipitation data, Pacific Decadal Oscillation, Oceanic Niños Index, Atlantic Multidecadal Oscillation, North Atlantic Oscillation, Atlantic Dipole and Sunspot Cycle for a 65 year period were used. The precipitation data were filtered with gap filling using the regional weighting method. The behavior of precipitation over time was analyzed and the relationship of climatological mean and boxplot results was verified. The Standardized Precipitation Index for the Grande River Basin showed that in the last five years, the dry period was less dry compared to previous periods. On the other hand, in the São Francisco River Basin it maintained a precipitation pattern over the precipitation time series. The cluster analysis identified five homogeneous regions in the Grande River Basin by means of principal component analysis that explained 86% of the total variance of the mean monthly rainfall from 174 rainfall stations and, four homogeneous regions in the São Francisco River Basin with 87% of the total variance of the mean monthly rainfall from 199 rainfall stations. Crossed ondelet analysis indicated a relationship between precipitation and climatic indices in the São Francisco River Basin, characterized by heterogeneous spatio-temporal distribution of precipitation due to its position and geographical extent, with different precipitation regimes. The Grande River Basin was characterized by homogeneous precipitation regimes. Predictions using the autoregressive integrated moving averages (ARIMA) method and artificial neural networks (NN) indicated that the latter performed better and contributed to improve climatological analyses. However, none of the methods was able to achieve a satisfactory result of cause and effect relationship between climate indices and precipitation in the watersheds. Showing that the interaction between the oceans and atmosphere and rainfall is more complex. However, future studies can improve the results obtained.Biblioteca Digitais de Teses e Dissertações da USPPereira Filho, Augusto JoseSiqueira, Nayara Arroxelas dos Santos2022-05-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/14/14133/tde-07072022-140843/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2022-07-08T11:15:55Zoai:teses.usp.br:tde-07072022-140843Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-07-08T11:15:55Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Diagnóstico e prognóstico de eventos extremos de precipitação nas bacias hidrográficas do Rio São Francisco e do Rio Grande
Diagnosis and Prognosis of Precipitation Extremes in São Francisco and Grande Rivers Basins
title Diagnóstico e prognóstico de eventos extremos de precipitação nas bacias hidrográficas do Rio São Francisco e do Rio Grande
spellingShingle Diagnóstico e prognóstico de eventos extremos de precipitação nas bacias hidrográficas do Rio São Francisco e do Rio Grande
Siqueira, Nayara Arroxelas dos Santos
Climatologia
Climatology
Hidrometeorologia
Hydrometeorology
Métodos Estatísticos e Análise Espectral.
Statistical Methods and Spectral Analysis.
title_short Diagnóstico e prognóstico de eventos extremos de precipitação nas bacias hidrográficas do Rio São Francisco e do Rio Grande
title_full Diagnóstico e prognóstico de eventos extremos de precipitação nas bacias hidrográficas do Rio São Francisco e do Rio Grande
title_fullStr Diagnóstico e prognóstico de eventos extremos de precipitação nas bacias hidrográficas do Rio São Francisco e do Rio Grande
title_full_unstemmed Diagnóstico e prognóstico de eventos extremos de precipitação nas bacias hidrográficas do Rio São Francisco e do Rio Grande
title_sort Diagnóstico e prognóstico de eventos extremos de precipitação nas bacias hidrográficas do Rio São Francisco e do Rio Grande
author Siqueira, Nayara Arroxelas dos Santos
author_facet Siqueira, Nayara Arroxelas dos Santos
author_role author
dc.contributor.none.fl_str_mv Pereira Filho, Augusto Jose
dc.contributor.author.fl_str_mv Siqueira, Nayara Arroxelas dos Santos
dc.subject.por.fl_str_mv Climatologia
Climatology
Hidrometeorologia
Hydrometeorology
Métodos Estatísticos e Análise Espectral.
Statistical Methods and Spectral Analysis.
topic Climatologia
Climatology
Hidrometeorologia
Hydrometeorology
Métodos Estatísticos e Análise Espectral.
Statistical Methods and Spectral Analysis.
description O objetivo desse trabalho foi o de avaliar a climatologia das Bacias do Rio Grande e Rio São Francisco por meio de análises estatísticas e prognóstico de precipitação por meio de Redes Neurais Artificiais. Utilizaram-se, para tal, dados de precipitação nas bacias, Índices Climáticos de Oscilação Decenal do Pacífico, Índice Oceânico de Niños, Oscilação Multidecenal do Atlântico, Oscilação do Atlântico Norte, Dipolo do Atlântico e Ciclo de Manchas Solares para um período de 65 anos. Os dados de precipitação foram filtrados com preenchimento de falhas por meio do método de ponderação regional. Analisou-se o comportamento da precipitação ao longo do tempo e verificou-se a relação de resultados da média climatológica e do boxplot. O Índice de Precipitação Padronizada da Bacia do Rio Grande mostrou que, nos últimos cinco anos, o período seco foi menos seco em relação aos períodos anteriores. Por outro lado, na Bacia do Rio São Francisco manteve um padrão de precipitação ao longo da série temporal de precipitação. A Análise de Agrupamento identificou cinco regiões homogêneas na Bacia do Rio Grande por meio da análise de componentes principais que explicam 86% da variância total da chuva média mensal de 174 postos pluviométricos e, quatro regiões homogêneas na Bacia do Rio São Francisco com 87% da variância total da chuva média mensal de 199 postos pluviométricos. A análise de ondeletas cruzadas indicou uma relação entre a precipitação e os índices climáticos na Bacia do Rio São Francisco, caracterizada por distribuição espaço-temporal de precipitação heterogênea devido à sua posição e extensão geográfica, com diferentes regimes de precipitação. A bacia do Rio Grande foi caracterizada por regimes homogêneos de precipitação. Os prognósticos por meio do método auto-regressivo integrado de médias móveis (ARIMA) e redes neurais artificiais (RNAs) indicaram que esse último apresentou desempenho melhor, além de contribuir para melhorar as análises climatológicas. Porém, nenhum dos métodos foi capaz de atingir um resultado satisfatório de relação causa e efeito entre os índices climáticos e a precipitação nas bacias hidrográficas. Mostrando que a interação entre os oceanos e atmosfera e a chuva é mais complexa. Contudo, estudos futuros podem melhorar os resultados obtidos.
publishDate 2022
dc.date.none.fl_str_mv 2022-05-11
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/14/14133/tde-07072022-140843/
url https://www.teses.usp.br/teses/disponiveis/14/14133/tde-07072022-140843/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257963048206336