Avaliação de mecanismos de suporte à tomada de decisão e sua aplicabilidade no auxílio à priorização de casos em regulações de urgências e emergências

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Pollettini, Juliana Tarossi
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/17/17138/tde-30032017-101723/
Resumo: Introdução: A Regulação Médica, que representa a aplicação de técnicas de logística ao contexto de emergência, é responsável pela disponibilização de recursos apropriados, nas condições apropriadas para pacientes apropriados. Um sistema para Regulação Médica de Urgências e Emergências foi desenvolvido em 2009 e foi implantado na forma de um projeto-piloto. Técnicas nas áreas de processamento de linguagem natural, recuperação de informação e aprendizado de máquina podem ser utilizadas para processar registros clínicos e auxiliar processos de tomada de decisão. Objetivos: No presente trabalho busca-se: (i) comparar diferentes metodologias para representação e extração de informação de documentos em texto livre, tais como solicitações de regulação; (ii) proporcionar suporte à decisão na definição de prioridade de casos, com processamento textual e semântico do resumo clínico dos casos; e (iii) analisar as contribuições dos dados clínicos e prioridade definida durante o processo de regulação para o desfecho do caso. Metodologia: Foram utilizados dados do projeto-piloto, assim como dados relativos ao desfecho do caso de pacientes regulados e admitidos na Unidade de Emergência do HCFMRP-USP. Os dados foram processados com o auxílio de tecnologias de Aprendizado de Máquina, Mineração de Textos e Recuperação de Informação para extrair informações organizadas em atributos a serem utilizados pra permitir suporte à decisão na prioridade do caso. Resultados: Os dados de pedidos de regulação apresentam uma grande quantidade de casos com valores de atributos muito parecidos (algumas vezes idênticos), contudo com classes (prioridades) diferentes, caracterizando uma base de dados com grande quantidade de ruídos, o que dificulta a aplicação de tecnologias como Aprendizado de Máquina. Resultados evidenciam o caráter subjetivo na definição de prioridades, que talvez seja influenciada por outros fatores que não estão presentes no texto do registro clínico do paciente. Resultados de suporte à decisão na definição de prioridade e desfecho do caso indicam que aplicar processamento semântico, mapeando termos para conceitos médicos do UMLS, reduz o problema da dimensionalidade quando comparado a abordagens menos robustas de mineração de textos. A abordagem apoiada por recuperação de informação, permite que sejam classificados apenas pedidos de regulação que sejam mais similares que um limiar (threshold) desejado em relação a algum caso do banco de dados. Desta maneira, esta abordagem pode ser utilizada para reduzir sobrecarga, permitindo que reguladores concentrem sua atenção em casos mais críticos e casos de maior particularidade (não similares a casos históricos). Conclusões: O presente trabalho proporcionou suporte à decisão na priorização de casos em regulações de urgência e emergência, com processamento textual e semântico do resumo clínico dos casos. Definiu-se como proposta para suporte à decisão na priorização de casos um processo composto por três etapas: (i) análise do risco de óbito; (ii) pré-priorização automática de casos de alta similaridade com casos históricos; e (iii) apoio à decisão com base em casos históricos (aprendizagem baseada em exemplos).
id USP_1cab6ede1cb89be4612059cf01a3e7d9
oai_identifier_str oai:teses.usp.br:tde-30032017-101723
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Avaliação de mecanismos de suporte à tomada de decisão e sua aplicabilidade no auxílio à priorização de casos em regulações de urgências e emergênciasEvaluation of decision support mechanisms and their aplicability to aid prioritization of cases from medical coordination of emergency requestsAprendizado de MáquinaEmergency MedicineInformation RetrievalMachine LearningMedical CoordinationMedicina de EmergênciaMineração de TextosNatural Language ProcessingRecuperação de InformaçãoRegulação MédicaIntrodução: A Regulação Médica, que representa a aplicação de técnicas de logística ao contexto de emergência, é responsável pela disponibilização de recursos apropriados, nas condições apropriadas para pacientes apropriados. Um sistema para Regulação Médica de Urgências e Emergências foi desenvolvido em 2009 e foi implantado na forma de um projeto-piloto. Técnicas nas áreas de processamento de linguagem natural, recuperação de informação e aprendizado de máquina podem ser utilizadas para processar registros clínicos e auxiliar processos de tomada de decisão. Objetivos: No presente trabalho busca-se: (i) comparar diferentes metodologias para representação e extração de informação de documentos em texto livre, tais como solicitações de regulação; (ii) proporcionar suporte à decisão na definição de prioridade de casos, com processamento textual e semântico do resumo clínico dos casos; e (iii) analisar as contribuições dos dados clínicos e prioridade definida durante o processo de regulação para o desfecho do caso. Metodologia: Foram utilizados dados do projeto-piloto, assim como dados relativos ao desfecho do caso de pacientes regulados e admitidos na Unidade de Emergência do HCFMRP-USP. Os dados foram processados com o auxílio de tecnologias de Aprendizado de Máquina, Mineração de Textos e Recuperação de Informação para extrair informações organizadas em atributos a serem utilizados pra permitir suporte à decisão na prioridade do caso. Resultados: Os dados de pedidos de regulação apresentam uma grande quantidade de casos com valores de atributos muito parecidos (algumas vezes idênticos), contudo com classes (prioridades) diferentes, caracterizando uma base de dados com grande quantidade de ruídos, o que dificulta a aplicação de tecnologias como Aprendizado de Máquina. Resultados evidenciam o caráter subjetivo na definição de prioridades, que talvez seja influenciada por outros fatores que não estão presentes no texto do registro clínico do paciente. Resultados de suporte à decisão na definição de prioridade e desfecho do caso indicam que aplicar processamento semântico, mapeando termos para conceitos médicos do UMLS, reduz o problema da dimensionalidade quando comparado a abordagens menos robustas de mineração de textos. A abordagem apoiada por recuperação de informação, permite que sejam classificados apenas pedidos de regulação que sejam mais similares que um limiar (threshold) desejado em relação a algum caso do banco de dados. Desta maneira, esta abordagem pode ser utilizada para reduzir sobrecarga, permitindo que reguladores concentrem sua atenção em casos mais críticos e casos de maior particularidade (não similares a casos históricos). Conclusões: O presente trabalho proporcionou suporte à decisão na priorização de casos em regulações de urgência e emergência, com processamento textual e semântico do resumo clínico dos casos. Definiu-se como proposta para suporte à decisão na priorização de casos um processo composto por três etapas: (i) análise do risco de óbito; (ii) pré-priorização automática de casos de alta similaridade com casos históricos; e (iii) apoio à decisão com base em casos históricos (aprendizagem baseada em exemplos).Introduction: The Medical Coordination, which is the application of logistics techniques to the emergency context, is responsible for providing appropriate resources, in appropriate conditions to appropriate patients. A system for medical coordination of emergency requests was developed in 2009 and was implemented as a pilot project, although some activities related to medical coordination decision making are extremely subjective. Techniques from the areas of natural language processing, information retrieval and machine learning can be used to process clinical records and assist decision-making processes. Objectives: The present study aims to: (i) compare different methodologies for representation and information extraction from free text documents, such as coordination requests; (ii) provide decision support to prioritization of requests, with textual and semantic processing of clinical summaries of the cases; and (iii) analyze the contributions of clinical data and priority defined during the coordination process to the final case outcome. Methodology: Data from the pilot project, as well as data on the case outcome of coordinated patients admitted to the HCFMRP-USP Emergency Unit we used. Data was processed with the aid of Machine Learning, Information Retrival and Text Mining techniques to extract information organized into attributes to be used to enable decision support on the priority of the case. Results: The coordination requests data contain a large number of cases with very similar attribute values (sometimes identical), but with different classes (priorities), characterizing a database with a large amount of noise, making it hard to apply technologies such as Machine Learning. Results denote the subjective aspect in the definition of priorities, which may be influenced by other factors that are not present in the patient\'s clinical record text. Decision support results in prioritization and case outcome indicate that applying semantic processing, mapping terms to UMLS medical concepts, reduces the dimensionality problem when compared to less robust text mining approaches. The approach supported by information retrieval allows to classify only coordination requests that are more similar than a defined threshold to a historical case. Thus, this approach can be used to reduce overhead, allowing coordinators to focus their attention on the most critical cases and cases of greater particularity (not similar to historical cases). Conclusions: This work provided decision support in prioritizing cases of urgency and emergency coordination requests, with textual and semantic processing of clinical summary cases. It was defined as a proposal for decision support in prioritization of requestes a process consisting of three steps: (i) analysis of the risk of death; (ii) automatic pre-prioritization of cases of high similarity with historical cases; and (iii) decision support based on historical cases (examples-based learning).Biblioteca Digitais de Teses e Dissertações da USPPazin Filho, AntonioPollettini, Juliana Tarossi2016-11-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/17/17138/tde-30032017-101723/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-07-17T16:34:08Zoai:teses.usp.br:tde-30032017-101723Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-17T16:34:08Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Avaliação de mecanismos de suporte à tomada de decisão e sua aplicabilidade no auxílio à priorização de casos em regulações de urgências e emergências
Evaluation of decision support mechanisms and their aplicability to aid prioritization of cases from medical coordination of emergency requests
title Avaliação de mecanismos de suporte à tomada de decisão e sua aplicabilidade no auxílio à priorização de casos em regulações de urgências e emergências
spellingShingle Avaliação de mecanismos de suporte à tomada de decisão e sua aplicabilidade no auxílio à priorização de casos em regulações de urgências e emergências
Pollettini, Juliana Tarossi
Aprendizado de Máquina
Emergency Medicine
Information Retrieval
Machine Learning
Medical Coordination
Medicina de Emergência
Mineração de Textos
Natural Language Processing
Recuperação de Informação
Regulação Médica
title_short Avaliação de mecanismos de suporte à tomada de decisão e sua aplicabilidade no auxílio à priorização de casos em regulações de urgências e emergências
title_full Avaliação de mecanismos de suporte à tomada de decisão e sua aplicabilidade no auxílio à priorização de casos em regulações de urgências e emergências
title_fullStr Avaliação de mecanismos de suporte à tomada de decisão e sua aplicabilidade no auxílio à priorização de casos em regulações de urgências e emergências
title_full_unstemmed Avaliação de mecanismos de suporte à tomada de decisão e sua aplicabilidade no auxílio à priorização de casos em regulações de urgências e emergências
title_sort Avaliação de mecanismos de suporte à tomada de decisão e sua aplicabilidade no auxílio à priorização de casos em regulações de urgências e emergências
author Pollettini, Juliana Tarossi
author_facet Pollettini, Juliana Tarossi
author_role author
dc.contributor.none.fl_str_mv Pazin Filho, Antonio
dc.contributor.author.fl_str_mv Pollettini, Juliana Tarossi
dc.subject.por.fl_str_mv Aprendizado de Máquina
Emergency Medicine
Information Retrieval
Machine Learning
Medical Coordination
Medicina de Emergência
Mineração de Textos
Natural Language Processing
Recuperação de Informação
Regulação Médica
topic Aprendizado de Máquina
Emergency Medicine
Information Retrieval
Machine Learning
Medical Coordination
Medicina de Emergência
Mineração de Textos
Natural Language Processing
Recuperação de Informação
Regulação Médica
description Introdução: A Regulação Médica, que representa a aplicação de técnicas de logística ao contexto de emergência, é responsável pela disponibilização de recursos apropriados, nas condições apropriadas para pacientes apropriados. Um sistema para Regulação Médica de Urgências e Emergências foi desenvolvido em 2009 e foi implantado na forma de um projeto-piloto. Técnicas nas áreas de processamento de linguagem natural, recuperação de informação e aprendizado de máquina podem ser utilizadas para processar registros clínicos e auxiliar processos de tomada de decisão. Objetivos: No presente trabalho busca-se: (i) comparar diferentes metodologias para representação e extração de informação de documentos em texto livre, tais como solicitações de regulação; (ii) proporcionar suporte à decisão na definição de prioridade de casos, com processamento textual e semântico do resumo clínico dos casos; e (iii) analisar as contribuições dos dados clínicos e prioridade definida durante o processo de regulação para o desfecho do caso. Metodologia: Foram utilizados dados do projeto-piloto, assim como dados relativos ao desfecho do caso de pacientes regulados e admitidos na Unidade de Emergência do HCFMRP-USP. Os dados foram processados com o auxílio de tecnologias de Aprendizado de Máquina, Mineração de Textos e Recuperação de Informação para extrair informações organizadas em atributos a serem utilizados pra permitir suporte à decisão na prioridade do caso. Resultados: Os dados de pedidos de regulação apresentam uma grande quantidade de casos com valores de atributos muito parecidos (algumas vezes idênticos), contudo com classes (prioridades) diferentes, caracterizando uma base de dados com grande quantidade de ruídos, o que dificulta a aplicação de tecnologias como Aprendizado de Máquina. Resultados evidenciam o caráter subjetivo na definição de prioridades, que talvez seja influenciada por outros fatores que não estão presentes no texto do registro clínico do paciente. Resultados de suporte à decisão na definição de prioridade e desfecho do caso indicam que aplicar processamento semântico, mapeando termos para conceitos médicos do UMLS, reduz o problema da dimensionalidade quando comparado a abordagens menos robustas de mineração de textos. A abordagem apoiada por recuperação de informação, permite que sejam classificados apenas pedidos de regulação que sejam mais similares que um limiar (threshold) desejado em relação a algum caso do banco de dados. Desta maneira, esta abordagem pode ser utilizada para reduzir sobrecarga, permitindo que reguladores concentrem sua atenção em casos mais críticos e casos de maior particularidade (não similares a casos históricos). Conclusões: O presente trabalho proporcionou suporte à decisão na priorização de casos em regulações de urgência e emergência, com processamento textual e semântico do resumo clínico dos casos. Definiu-se como proposta para suporte à decisão na priorização de casos um processo composto por três etapas: (i) análise do risco de óbito; (ii) pré-priorização automática de casos de alta similaridade com casos históricos; e (iii) apoio à decisão com base em casos históricos (aprendizagem baseada em exemplos).
publishDate 2016
dc.date.none.fl_str_mv 2016-11-23
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/17/17138/tde-30032017-101723/
url http://www.teses.usp.br/teses/disponiveis/17/17138/tde-30032017-101723/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258588238577664