Segmentação e reconhecimento de gestos em tempo real com câmeras e aceleração gráfica

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: Dantas, Daniel Oliveira
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
GPU
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45134/tde-23012017-160508/
Resumo: O objetivo deste trabalho é reconhecer gestos em tempo real apenas com o uso de câmeras, sem marcadores, roupas ou qualquer outro tipo de sensor. A montagem do ambiente de captura é simples, com apenas duas câmeras e um computador. O fundo deve ser estático, e contrastar com o usuário. A ausência de marcadores ou roupas especiais dificulta a tarefa de localizar os membros. A motivação desta tese é criar um ambiente de realidade virtual para treino de goleiros, que possibilite corrigir erros de movimentação, posicionamento e de escolha do método de defesa. A técnica desenvolvida pode ser aplicada para qualquer atividade que envolva gestos ou movimentos do corpo. O reconhecimento de gestos começa com a detecção da região da imagem onde se encontra o usuário. Nessa região, localizamos as regiões mais salientes como candidatas a extremidades do corpo, ou seja, mãos, pés e cabeça. As extremidades encontradas recebem um rótulo que indica a parte do corpo que deve representar. Um vetor com as coordenadas das extremidades é gerado. Para descobrir qual a pose do usuário, o vetor com as coordenadas das suas extremidades é classificado. O passo final é a classificação temporal, ou seja, o reconhecimento do gesto. A técnica desenvolvida é robusta, funcionando bem mesmo quando o sistema foi treinado com um usuário e aplicado a dados de outro.
id USP_1d3b51607484e525e99a4536620191af
oai_identifier_str oai:teses.usp.br:tde-23012017-160508
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Segmentação e reconhecimento de gestos em tempo real com câmeras e aceleração gráficaReal-time segmentation and gesture recognition with cameras and graphical acceleration3D reconstructionGesture recognitionGPUGPUOpenGLOpenGLReal-timeReconhecimento de gestosReconstrução 3DStereo visionTempo realVisão estéreoO objetivo deste trabalho é reconhecer gestos em tempo real apenas com o uso de câmeras, sem marcadores, roupas ou qualquer outro tipo de sensor. A montagem do ambiente de captura é simples, com apenas duas câmeras e um computador. O fundo deve ser estático, e contrastar com o usuário. A ausência de marcadores ou roupas especiais dificulta a tarefa de localizar os membros. A motivação desta tese é criar um ambiente de realidade virtual para treino de goleiros, que possibilite corrigir erros de movimentação, posicionamento e de escolha do método de defesa. A técnica desenvolvida pode ser aplicada para qualquer atividade que envolva gestos ou movimentos do corpo. O reconhecimento de gestos começa com a detecção da região da imagem onde se encontra o usuário. Nessa região, localizamos as regiões mais salientes como candidatas a extremidades do corpo, ou seja, mãos, pés e cabeça. As extremidades encontradas recebem um rótulo que indica a parte do corpo que deve representar. Um vetor com as coordenadas das extremidades é gerado. Para descobrir qual a pose do usuário, o vetor com as coordenadas das suas extremidades é classificado. O passo final é a classificação temporal, ou seja, o reconhecimento do gesto. A técnica desenvolvida é robusta, funcionando bem mesmo quando o sistema foi treinado com um usuário e aplicado a dados de outro.Our aim in this work is to recognize gestures in real time with cameras, without markers or special clothes. The capture environment setup is simple, uses just two cameras and a computer. The background must be static, and its colors must be different the users. The absence of markers or special clothes difficults the location of the users limbs. The motivation of this thesis is to create a virtual reality environment for goalkeeper training, but the technique can be applied in any activity that involves gestures or body movements. The recognition of gestures starts with the background subtraction. From the foreground, we locate the more proeminent regions as candidates to body extremities, that is, hands, feet and head. The found extremities receive a label that indicates the body part it may represent. To classify the users pose, the vector with the coordinates of his extremities is compared to keyposes and the best match is selected. The final step is the temporal classification, that is, the gesture recognition. The developed technique is robust, working well even when the system was trained with an user and applied to another users data.Biblioteca Digitais de Teses e Dissertações da USPBarrera, JuniorDantas, Daniel Oliveira2010-03-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45134/tde-23012017-160508/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-07-17T16:34:08Zoai:teses.usp.br:tde-23012017-160508Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-17T16:34:08Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Segmentação e reconhecimento de gestos em tempo real com câmeras e aceleração gráfica
Real-time segmentation and gesture recognition with cameras and graphical acceleration
title Segmentação e reconhecimento de gestos em tempo real com câmeras e aceleração gráfica
spellingShingle Segmentação e reconhecimento de gestos em tempo real com câmeras e aceleração gráfica
Dantas, Daniel Oliveira
3D reconstruction
Gesture recognition
GPU
GPU
OpenGL
OpenGL
Real-time
Reconhecimento de gestos
Reconstrução 3D
Stereo vision
Tempo real
Visão estéreo
title_short Segmentação e reconhecimento de gestos em tempo real com câmeras e aceleração gráfica
title_full Segmentação e reconhecimento de gestos em tempo real com câmeras e aceleração gráfica
title_fullStr Segmentação e reconhecimento de gestos em tempo real com câmeras e aceleração gráfica
title_full_unstemmed Segmentação e reconhecimento de gestos em tempo real com câmeras e aceleração gráfica
title_sort Segmentação e reconhecimento de gestos em tempo real com câmeras e aceleração gráfica
author Dantas, Daniel Oliveira
author_facet Dantas, Daniel Oliveira
author_role author
dc.contributor.none.fl_str_mv Barrera, Junior
dc.contributor.author.fl_str_mv Dantas, Daniel Oliveira
dc.subject.por.fl_str_mv 3D reconstruction
Gesture recognition
GPU
GPU
OpenGL
OpenGL
Real-time
Reconhecimento de gestos
Reconstrução 3D
Stereo vision
Tempo real
Visão estéreo
topic 3D reconstruction
Gesture recognition
GPU
GPU
OpenGL
OpenGL
Real-time
Reconhecimento de gestos
Reconstrução 3D
Stereo vision
Tempo real
Visão estéreo
description O objetivo deste trabalho é reconhecer gestos em tempo real apenas com o uso de câmeras, sem marcadores, roupas ou qualquer outro tipo de sensor. A montagem do ambiente de captura é simples, com apenas duas câmeras e um computador. O fundo deve ser estático, e contrastar com o usuário. A ausência de marcadores ou roupas especiais dificulta a tarefa de localizar os membros. A motivação desta tese é criar um ambiente de realidade virtual para treino de goleiros, que possibilite corrigir erros de movimentação, posicionamento e de escolha do método de defesa. A técnica desenvolvida pode ser aplicada para qualquer atividade que envolva gestos ou movimentos do corpo. O reconhecimento de gestos começa com a detecção da região da imagem onde se encontra o usuário. Nessa região, localizamos as regiões mais salientes como candidatas a extremidades do corpo, ou seja, mãos, pés e cabeça. As extremidades encontradas recebem um rótulo que indica a parte do corpo que deve representar. Um vetor com as coordenadas das extremidades é gerado. Para descobrir qual a pose do usuário, o vetor com as coordenadas das suas extremidades é classificado. O passo final é a classificação temporal, ou seja, o reconhecimento do gesto. A técnica desenvolvida é robusta, funcionando bem mesmo quando o sistema foi treinado com um usuário e aplicado a dados de outro.
publishDate 2010
dc.date.none.fl_str_mv 2010-03-15
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/45/45134/tde-23012017-160508/
url http://www.teses.usp.br/teses/disponiveis/45/45134/tde-23012017-160508/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258405383700480