Parameter optimization of automatic phase detection and picking algorithms - Application in Sao Paulo University Seismological Center and Colombian National Seismic Network.

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Lopez, Camilo Eduardo Muñoz
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/14/14132/tde-20092021-120029/
Resumo: The accurate and efficient analysis of seismic data requires the implementation of automatic rocessing algorithms. Therefore, the reliability and quality of these automatic results have become critical requirements for seismological networks. Two methodologies, Grid-search and Bayesian optimization, were used to optimize the automatic detection and phase picking parameters in SeisComP. These methodologies were tested using a set of stations selected from two seismological networks the Brazilian Seismic Network (RSBR) and Colombian National Seismological Network (RSNC). A comparison of manual and previous automatic locations, revealed numerous missing events and others with low-quality locations in automatic databases. We selected 508 manual events from 2017/01/01 to 2020/07/31 in Brazil, and 532 manual events from 2019/02/01 to 2019/02/15 near the Bucaramanga Nest in Colombia, as training data sets for the optimization process. A code was implemented to use an iterative grid-search to optimize the picking parameters. In addition, the Optuna Python package was used to implement the Bayesian optimization. Selected events were used as a training set, and an iterative process according to the Bayesian method was used. The results of both methodologies were compared. Both methodologies improved the system performance by increasing the number of picks and detections. Grid-search allowed us to perform a complete analysis of the results examining the entire space of parameters. However, Grid-search lose efficiency while increasing the number of parameters being optimized. On the other hand, the Bayesian algorithm is computationally more efficient by not exploring the entire parameter space. After the optimization process, automatic picks associated with P phases increases by 78% (76 picks) and 56% (903 picks) for RSBR and RSNC, respectively. Although not all new picks belong to new events, the number of locations calculated using new automatic picks doubled the automatic locations determined by the systems before the optimization process for both networks. Seismological centers could implement methodologies such as Grid-search or Bayesian optimization to improve their automatic processing systems. Besides, the standardization of these methodologies would help to make their implementation easier.
id USP_1e5d8abed4fa72d9bb13c4c97bc15278
oai_identifier_str oai:teses.usp.br:tde-20092021-120029
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Parameter optimization of automatic phase detection and picking algorithms - Application in Sao Paulo University Seismological Center and Colombian National Seismic Network.Otimização de parâmetros dos algoritmos de detecção automática e picado de fases - Aplicação no Centro Sismológico da Universidade de São Paulo e na Rede Sismológica Nacional da ColômbiaAutomatic processing systemDetecçãoDetectionGrid-search and Bayesian.Grid-search e algoritmo Bayesiano.OptimizationOtimizaçãoPickingPickingSistema de processamento automáticoThe accurate and efficient analysis of seismic data requires the implementation of automatic rocessing algorithms. Therefore, the reliability and quality of these automatic results have become critical requirements for seismological networks. Two methodologies, Grid-search and Bayesian optimization, were used to optimize the automatic detection and phase picking parameters in SeisComP. These methodologies were tested using a set of stations selected from two seismological networks the Brazilian Seismic Network (RSBR) and Colombian National Seismological Network (RSNC). A comparison of manual and previous automatic locations, revealed numerous missing events and others with low-quality locations in automatic databases. We selected 508 manual events from 2017/01/01 to 2020/07/31 in Brazil, and 532 manual events from 2019/02/01 to 2019/02/15 near the Bucaramanga Nest in Colombia, as training data sets for the optimization process. A code was implemented to use an iterative grid-search to optimize the picking parameters. In addition, the Optuna Python package was used to implement the Bayesian optimization. Selected events were used as a training set, and an iterative process according to the Bayesian method was used. The results of both methodologies were compared. Both methodologies improved the system performance by increasing the number of picks and detections. Grid-search allowed us to perform a complete analysis of the results examining the entire space of parameters. However, Grid-search lose efficiency while increasing the number of parameters being optimized. On the other hand, the Bayesian algorithm is computationally more efficient by not exploring the entire parameter space. After the optimization process, automatic picks associated with P phases increases by 78% (76 picks) and 56% (903 picks) for RSBR and RSNC, respectively. Although not all new picks belong to new events, the number of locations calculated using new automatic picks doubled the automatic locations determined by the systems before the optimization process for both networks. Seismological centers could implement methodologies such as Grid-search or Bayesian optimization to improve their automatic processing systems. Besides, the standardization of these methodologies would help to make their implementation easier.A análise precisa e eficiente de dados sísmicos requer a implementação de algoritmos de processamento automático. Portanto, a confiabilidade e a qualidade desses resultados automáticos tornaram-se requisitos críticos para redes sismológicas. Duas metodologias, Grid-Search e algoritmo Bayesiano, foram utilizadas para otimizar a detecção automática de eventos e os parâmetros de seleção de fases no software SeisComP. Essas metodologias foram testadas com um conjunto de estações selecionadas de duas redes sismológicas, Rede Sismográfica Brasileira (RSBR) e a Rede Sismológica Nacional da Colômbia (RSNC). Depois de comparar as localizações manuais e automáticas, encontramos vários eventos ausentes e outros com localizações de baixa qualidade nos bancos de dados automáticos. Selecionamos 508 eventos manuais no período 2017/01/01 - 2020/07/31 no Brasil, e 532 eventos manuais no período 2019/02/01 - 2019/02/15 próximos ao Ninho de Bucaramanga na Colômbia, como conjuntos de dados de treinamento para o processo de otimização. Foi implementado um código para usar Grid-Search como uma metodologia de otimização; este código faz um processo iterativo que gera picks automáticos modificando os parâmetros. O pacote Optuna foi utilizado para implementar o algoritmo Bayesiano como metodologia de otimização. Os eventos selecionados foram usados como um conjunto de treinamento, e um processo iterativo de acordo com o método Bayesiano foi usado. Ambas as metodologias melhoraram o desempenho do sistema, aumentando o número de picks e detecções. Grid-Search nos permitiu realizar uma análise completa dos resultados examinando todo o espaço de parâmetros. Grid-Search, no entanto, aumenta o tempo de computação ao testar muitos valores dos parâmetros envolvidos no processo de otimização. Por outro lado, o algoritmo Bayesiano pode ser implementado usando vários parâmetros sem aumentar o tempo de computação. Após o processo de otimização, os picks automáticos aumentam em 78% e 56% para RSBR e RSNC, respectivamente. Embora nem todos os novos picks pertençam a novos eventos, O número de localizações calculadas com os novos pikcs automáticos, dobrou as localizações automáticas determinadas pelos sistemas antes do processo de otimização para ambas as redes. Centros sismológicos podem implementar metodologias como Grid-Search ou algoritmo Bayesiano para melhorar seus sistemas de processamento automático. Além disso, a padronização dessas metodologias ajudaria a facilitar sua implementação.Biblioteca Digitais de Teses e Dissertações da USPAssumpcao, Marcelo Sousa deLopez, Camilo Eduardo Muñoz2021-07-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/14/14132/tde-20092021-120029/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-10-28T14:59:02Zoai:teses.usp.br:tde-20092021-120029Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-10-28T14:59:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Parameter optimization of automatic phase detection and picking algorithms - Application in Sao Paulo University Seismological Center and Colombian National Seismic Network.
Otimização de parâmetros dos algoritmos de detecção automática e picado de fases - Aplicação no Centro Sismológico da Universidade de São Paulo e na Rede Sismológica Nacional da Colômbia
title Parameter optimization of automatic phase detection and picking algorithms - Application in Sao Paulo University Seismological Center and Colombian National Seismic Network.
spellingShingle Parameter optimization of automatic phase detection and picking algorithms - Application in Sao Paulo University Seismological Center and Colombian National Seismic Network.
Lopez, Camilo Eduardo Muñoz
Automatic processing system
Detecção
Detection
Grid-search and Bayesian.
Grid-search e algoritmo Bayesiano.
Optimization
Otimização
Picking
Picking
Sistema de processamento automático
title_short Parameter optimization of automatic phase detection and picking algorithms - Application in Sao Paulo University Seismological Center and Colombian National Seismic Network.
title_full Parameter optimization of automatic phase detection and picking algorithms - Application in Sao Paulo University Seismological Center and Colombian National Seismic Network.
title_fullStr Parameter optimization of automatic phase detection and picking algorithms - Application in Sao Paulo University Seismological Center and Colombian National Seismic Network.
title_full_unstemmed Parameter optimization of automatic phase detection and picking algorithms - Application in Sao Paulo University Seismological Center and Colombian National Seismic Network.
title_sort Parameter optimization of automatic phase detection and picking algorithms - Application in Sao Paulo University Seismological Center and Colombian National Seismic Network.
author Lopez, Camilo Eduardo Muñoz
author_facet Lopez, Camilo Eduardo Muñoz
author_role author
dc.contributor.none.fl_str_mv Assumpcao, Marcelo Sousa de
dc.contributor.author.fl_str_mv Lopez, Camilo Eduardo Muñoz
dc.subject.por.fl_str_mv Automatic processing system
Detecção
Detection
Grid-search and Bayesian.
Grid-search e algoritmo Bayesiano.
Optimization
Otimização
Picking
Picking
Sistema de processamento automático
topic Automatic processing system
Detecção
Detection
Grid-search and Bayesian.
Grid-search e algoritmo Bayesiano.
Optimization
Otimização
Picking
Picking
Sistema de processamento automático
description The accurate and efficient analysis of seismic data requires the implementation of automatic rocessing algorithms. Therefore, the reliability and quality of these automatic results have become critical requirements for seismological networks. Two methodologies, Grid-search and Bayesian optimization, were used to optimize the automatic detection and phase picking parameters in SeisComP. These methodologies were tested using a set of stations selected from two seismological networks the Brazilian Seismic Network (RSBR) and Colombian National Seismological Network (RSNC). A comparison of manual and previous automatic locations, revealed numerous missing events and others with low-quality locations in automatic databases. We selected 508 manual events from 2017/01/01 to 2020/07/31 in Brazil, and 532 manual events from 2019/02/01 to 2019/02/15 near the Bucaramanga Nest in Colombia, as training data sets for the optimization process. A code was implemented to use an iterative grid-search to optimize the picking parameters. In addition, the Optuna Python package was used to implement the Bayesian optimization. Selected events were used as a training set, and an iterative process according to the Bayesian method was used. The results of both methodologies were compared. Both methodologies improved the system performance by increasing the number of picks and detections. Grid-search allowed us to perform a complete analysis of the results examining the entire space of parameters. However, Grid-search lose efficiency while increasing the number of parameters being optimized. On the other hand, the Bayesian algorithm is computationally more efficient by not exploring the entire parameter space. After the optimization process, automatic picks associated with P phases increases by 78% (76 picks) and 56% (903 picks) for RSBR and RSNC, respectively. Although not all new picks belong to new events, the number of locations calculated using new automatic picks doubled the automatic locations determined by the systems before the optimization process for both networks. Seismological centers could implement methodologies such as Grid-search or Bayesian optimization to improve their automatic processing systems. Besides, the standardization of these methodologies would help to make their implementation easier.
publishDate 2021
dc.date.none.fl_str_mv 2021-07-22
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/14/14132/tde-20092021-120029/
url https://www.teses.usp.br/teses/disponiveis/14/14132/tde-20092021-120029/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258310468698112