Predicting the performance of untested maize single cross hybrids based on information from genomic relationship matrix and genotype by environment interaction

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Krause, Matheus Dalsente
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/11/11137/tde-01082018-145640/
Resumo: Phenotyping in multi-environment trials (MET) plays an important role to access the differential response of maize hybrids across target breeding regions due to genotype by environment (GxE) interaction. In this context, an effective model of genomic selection (GS) to predict the performance of untested hybrids in MET is essential to maximize genetic gains and to efficiently allocated the breeding programs\' budget. Therefore, the goals of this study were (i) to evaluate the predictive accuracies of GBLUP (Genomic Best Linear Unbiased Prediction) models to predict grain yield performance of unobserved tropical maize single-cross hybrids, using models that consider GxE interaction by fitting a factor analytic (FA) variance-covariance (VCOV) structure, and (ii) to investigate the usefulness of genomic relationship information in combination with different VCOV for genetics and residuals effects, under different levels of unbalanced environments. Predictions were performed for two situations: (CV1) untested hybrids, and (CV2) hybrids evaluated in some environments but missing in others. Phenotypic data of grain yield was measured in 156 maize single-cross hybrids at 12 environments. Hybrids genotypes were inferred based on their parents (inbred lines) via SNP (single nucleotide polymorphism) markers obtained from GBS (genotypingby- sequencing). The procedures and models applied in this study can be easily extended to other crops in which MET plays an important role in the breeding process.
id USP_2016d548640b9afd3c4c46f0c7607e9e
oai_identifier_str oai:teses.usp.br:tde-01082018-145640
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Predicting the performance of untested maize single cross hybrids based on information from genomic relationship matrix and genotype by environment interactionPredição de híbridos simples de milho não avaliados com informações da matriz de parentesco realizada e interação genótipos por ambientesEnsaios para múltiplos ambientesGBLUPGBLUPGenomic SelectionMulti-Environment TrialsSeleção genômicaVariance-CovarianceVariância-covariânciaPhenotyping in multi-environment trials (MET) plays an important role to access the differential response of maize hybrids across target breeding regions due to genotype by environment (GxE) interaction. In this context, an effective model of genomic selection (GS) to predict the performance of untested hybrids in MET is essential to maximize genetic gains and to efficiently allocated the breeding programs\' budget. Therefore, the goals of this study were (i) to evaluate the predictive accuracies of GBLUP (Genomic Best Linear Unbiased Prediction) models to predict grain yield performance of unobserved tropical maize single-cross hybrids, using models that consider GxE interaction by fitting a factor analytic (FA) variance-covariance (VCOV) structure, and (ii) to investigate the usefulness of genomic relationship information in combination with different VCOV for genetics and residuals effects, under different levels of unbalanced environments. Predictions were performed for two situations: (CV1) untested hybrids, and (CV2) hybrids evaluated in some environments but missing in others. Phenotypic data of grain yield was measured in 156 maize single-cross hybrids at 12 environments. Hybrids genotypes were inferred based on their parents (inbred lines) via SNP (single nucleotide polymorphism) markers obtained from GBS (genotypingby- sequencing). The procedures and models applied in this study can be easily extended to other crops in which MET plays an important role in the breeding process.A fenotipagem em ensaios de múltiplos ambientes (MET) tem papel importante para acessar a resposta diferencial de híbridos de milho em diferentes regiões alvo de melhoramento, o que se deve a interação genótipos por ambientes (GxE). Neste contexto, um modelo efetivo de seleção genômica (GS) para predição do desempenho de híbridos não avaliados em MET é essencial para maximizar os ganhos genéticos e alocar eficientemente o orçamento dos programas de melhoramento. Desta forma, os objetivos deste estudo foram (i) avaliar as acurácias preditivas de modelos GBLUP (do inglês, Genomic Best Linear Unbiased Prediction) na predição da produtividade de grãos de híbridos simples de milho tropical não avaliados, usando modelos genético-estatísticos que levam em consideração a interação GxE através de uma estrutura de variância-covariância (VCOV) do tipo fator analítico (FA) e (ii) investigar a utilidade da matriz de parentesco realizada em combinação com diferentes estruturas de VCOV para efeitos genéticos e de resíduos em diferentes níveis de ambientes em desbalanceamento. As predições foram realizadas em duas situações: (CV1) híbridos não avaliados em nenhum ambiente e (CV2) híbridos avaliados em alguns ambientes e em outros não. Foram fenotipados 156 híbridos simples de milho em 12 ambientes para a característica produtividade de grãos. O genótipo dos híbridos foi inferido com base nas informações de marcadores SNP (do inglês, single nucleotide polymorphism) das linhagens parentais, obtidos via GBS (do inglês, genotyping-by-sequencing). Os procedimentos e modelos utilizados neste estudo podem ser facilmente estendidos a outras culturas em que MET desempenha um papel importante no processo de melhoramento.Biblioteca Digitais de Teses e Dissertações da USPGarcia, Antonio Augusto FrancoKrause, Matheus Dalsente2018-05-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/11/11137/tde-01082018-145640/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2020-08-14T16:00:02Zoai:teses.usp.br:tde-01082018-145640Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212020-08-14T16:00:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Predicting the performance of untested maize single cross hybrids based on information from genomic relationship matrix and genotype by environment interaction
Predição de híbridos simples de milho não avaliados com informações da matriz de parentesco realizada e interação genótipos por ambientes
title Predicting the performance of untested maize single cross hybrids based on information from genomic relationship matrix and genotype by environment interaction
spellingShingle Predicting the performance of untested maize single cross hybrids based on information from genomic relationship matrix and genotype by environment interaction
Krause, Matheus Dalsente
Ensaios para múltiplos ambientes
GBLUP
GBLUP
Genomic Selection
Multi-Environment Trials
Seleção genômica
Variance-Covariance
Variância-covariância
title_short Predicting the performance of untested maize single cross hybrids based on information from genomic relationship matrix and genotype by environment interaction
title_full Predicting the performance of untested maize single cross hybrids based on information from genomic relationship matrix and genotype by environment interaction
title_fullStr Predicting the performance of untested maize single cross hybrids based on information from genomic relationship matrix and genotype by environment interaction
title_full_unstemmed Predicting the performance of untested maize single cross hybrids based on information from genomic relationship matrix and genotype by environment interaction
title_sort Predicting the performance of untested maize single cross hybrids based on information from genomic relationship matrix and genotype by environment interaction
author Krause, Matheus Dalsente
author_facet Krause, Matheus Dalsente
author_role author
dc.contributor.none.fl_str_mv Garcia, Antonio Augusto Franco
dc.contributor.author.fl_str_mv Krause, Matheus Dalsente
dc.subject.por.fl_str_mv Ensaios para múltiplos ambientes
GBLUP
GBLUP
Genomic Selection
Multi-Environment Trials
Seleção genômica
Variance-Covariance
Variância-covariância
topic Ensaios para múltiplos ambientes
GBLUP
GBLUP
Genomic Selection
Multi-Environment Trials
Seleção genômica
Variance-Covariance
Variância-covariância
description Phenotyping in multi-environment trials (MET) plays an important role to access the differential response of maize hybrids across target breeding regions due to genotype by environment (GxE) interaction. In this context, an effective model of genomic selection (GS) to predict the performance of untested hybrids in MET is essential to maximize genetic gains and to efficiently allocated the breeding programs\' budget. Therefore, the goals of this study were (i) to evaluate the predictive accuracies of GBLUP (Genomic Best Linear Unbiased Prediction) models to predict grain yield performance of unobserved tropical maize single-cross hybrids, using models that consider GxE interaction by fitting a factor analytic (FA) variance-covariance (VCOV) structure, and (ii) to investigate the usefulness of genomic relationship information in combination with different VCOV for genetics and residuals effects, under different levels of unbalanced environments. Predictions were performed for two situations: (CV1) untested hybrids, and (CV2) hybrids evaluated in some environments but missing in others. Phenotypic data of grain yield was measured in 156 maize single-cross hybrids at 12 environments. Hybrids genotypes were inferred based on their parents (inbred lines) via SNP (single nucleotide polymorphism) markers obtained from GBS (genotypingby- sequencing). The procedures and models applied in this study can be easily extended to other crops in which MET plays an important role in the breeding process.
publishDate 2018
dc.date.none.fl_str_mv 2018-05-02
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/11/11137/tde-01082018-145640/
url http://www.teses.usp.br/teses/disponiveis/11/11137/tde-01082018-145640/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257790142218240