Exportação concluída — 

Técnicas de interpretabilidade para aprendizado de máquina: um estudo abordando avaliação de crédito e detecção de fraude

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Caires, Daniel de Oliveira
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/55/55137/tde-16122022-180337/
Resumo: Atualmente técnicas de aprendizado de máquina vêm sendo constantemente utilizadas para apoiar no processo de tomada de decisões importantes para indivíduos e corporações. Com o peso dessas decisões, surgem também inúmeras preocupações relativas ao seu funcionamento, quais condições foram necessárias para levar aos resultados obtidos, ou até se possíveis erros ou vieses não interferiram. Por esse motivo, a interpretabilidade das técnicas de aprendizado de máquina é um tema cuja relevância cresce a cada dia. O objetivo dessa dissertação é avaliar as principais técnicas de interpretabilidade, para isso, aplicando-as em modelos preditivos de classificação em bases de dados reais, uma relacionada a concessão de crédito e outra sobre detecção de fraude. Dentre as técnicas avaliadas estão: Gráfico de Dependência Parcial, Permutação de Atributo de Importância, Importância de Atributo e SHAP (SHapley Additive exPlanations). Do ponto de vista metodológico, para cada base de dados foi desenvolvido um modelo preditivo e posteriormente as técnicas de interpretabilidade foram aplicadas. Os resultados mostraram que as técnicas conseguiram trazer mais entendimento sobre quais variáveis tiveram maior impacto para seu respectivo modelo, e até avaliar individualmente um consumidor, quantificando quanto cada variável contribuiu para a sua classificação final. Nesse sentido o SHAP se destacou sendo a técnica que trouxe maior variedade e qualidade de informações que contribuíram para se atingir avanço na interpretabilidade.
id USP_22077ca79a69c2ec86d6bee746038514
oai_identifier_str oai:teses.usp.br:tde-16122022-180337
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Técnicas de interpretabilidade para aprendizado de máquina: um estudo abordando avaliação de crédito e detecção de fraudeInterpretability techniques for machine learning: a study addressing credit assessment and fraud detectionAprendizado de máquinaInterpretabilidadeInterpretabilityMachine LearningSHAPSHAPAtualmente técnicas de aprendizado de máquina vêm sendo constantemente utilizadas para apoiar no processo de tomada de decisões importantes para indivíduos e corporações. Com o peso dessas decisões, surgem também inúmeras preocupações relativas ao seu funcionamento, quais condições foram necessárias para levar aos resultados obtidos, ou até se possíveis erros ou vieses não interferiram. Por esse motivo, a interpretabilidade das técnicas de aprendizado de máquina é um tema cuja relevância cresce a cada dia. O objetivo dessa dissertação é avaliar as principais técnicas de interpretabilidade, para isso, aplicando-as em modelos preditivos de classificação em bases de dados reais, uma relacionada a concessão de crédito e outra sobre detecção de fraude. Dentre as técnicas avaliadas estão: Gráfico de Dependência Parcial, Permutação de Atributo de Importância, Importância de Atributo e SHAP (SHapley Additive exPlanations). Do ponto de vista metodológico, para cada base de dados foi desenvolvido um modelo preditivo e posteriormente as técnicas de interpretabilidade foram aplicadas. Os resultados mostraram que as técnicas conseguiram trazer mais entendimento sobre quais variáveis tiveram maior impacto para seu respectivo modelo, e até avaliar individualmente um consumidor, quantificando quanto cada variável contribuiu para a sua classificação final. Nesse sentido o SHAP se destacou sendo a técnica que trouxe maior variedade e qualidade de informações que contribuíram para se atingir avanço na interpretabilidade.Currently, machine learning techniques have been constantly used to support the process of making important decisions for individuals and corporations. With the burden of these decisions, there are also numerous concerns regarding its behavior, which conditions were necessary to led to the obtained results, or even if possible errors or biases interfere. For this reason, the interpretability of machine learning techniques is a topic whose relevance has grown. The objective of this dissertation is to evaluate the main interpretability techniques, applying them in predictive classification models for real databases, one related to credit granting and another about fraud detection. Among the techniques evaluated are: Partial Dependency Plot, Permutation Feature Importance, Feature Importance and SHapley Additive exPlanations (SHAP). From the methodological point of view, for each database a predictive model was developed and later the interpretability techniques were applied. The results showed that the techniques were able to bring more knowledge about which variables had the greatest impact on their respective model, and even individually evaluate a consumer, quantifying how much each variable contributed to its final classification. In this sense, SHAP stood out as the technique that brought greater variety and quality of information that contributed to achieving progress in interpretability.Biblioteca Digitais de Teses e Dissertações da USPToledo, Cláudio Fabiano MottaCaires, Daniel de Oliveira2022-10-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55137/tde-16122022-180337/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2022-12-16T20:09:49Zoai:teses.usp.br:tde-16122022-180337Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-12-16T20:09:49Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Técnicas de interpretabilidade para aprendizado de máquina: um estudo abordando avaliação de crédito e detecção de fraude
Interpretability techniques for machine learning: a study addressing credit assessment and fraud detection
title Técnicas de interpretabilidade para aprendizado de máquina: um estudo abordando avaliação de crédito e detecção de fraude
spellingShingle Técnicas de interpretabilidade para aprendizado de máquina: um estudo abordando avaliação de crédito e detecção de fraude
Caires, Daniel de Oliveira
Aprendizado de máquina
Interpretabilidade
Interpretability
Machine Learning
SHAP
SHAP
title_short Técnicas de interpretabilidade para aprendizado de máquina: um estudo abordando avaliação de crédito e detecção de fraude
title_full Técnicas de interpretabilidade para aprendizado de máquina: um estudo abordando avaliação de crédito e detecção de fraude
title_fullStr Técnicas de interpretabilidade para aprendizado de máquina: um estudo abordando avaliação de crédito e detecção de fraude
title_full_unstemmed Técnicas de interpretabilidade para aprendizado de máquina: um estudo abordando avaliação de crédito e detecção de fraude
title_sort Técnicas de interpretabilidade para aprendizado de máquina: um estudo abordando avaliação de crédito e detecção de fraude
author Caires, Daniel de Oliveira
author_facet Caires, Daniel de Oliveira
author_role author
dc.contributor.none.fl_str_mv Toledo, Cláudio Fabiano Motta
dc.contributor.author.fl_str_mv Caires, Daniel de Oliveira
dc.subject.por.fl_str_mv Aprendizado de máquina
Interpretabilidade
Interpretability
Machine Learning
SHAP
SHAP
topic Aprendizado de máquina
Interpretabilidade
Interpretability
Machine Learning
SHAP
SHAP
description Atualmente técnicas de aprendizado de máquina vêm sendo constantemente utilizadas para apoiar no processo de tomada de decisões importantes para indivíduos e corporações. Com o peso dessas decisões, surgem também inúmeras preocupações relativas ao seu funcionamento, quais condições foram necessárias para levar aos resultados obtidos, ou até se possíveis erros ou vieses não interferiram. Por esse motivo, a interpretabilidade das técnicas de aprendizado de máquina é um tema cuja relevância cresce a cada dia. O objetivo dessa dissertação é avaliar as principais técnicas de interpretabilidade, para isso, aplicando-as em modelos preditivos de classificação em bases de dados reais, uma relacionada a concessão de crédito e outra sobre detecção de fraude. Dentre as técnicas avaliadas estão: Gráfico de Dependência Parcial, Permutação de Atributo de Importância, Importância de Atributo e SHAP (SHapley Additive exPlanations). Do ponto de vista metodológico, para cada base de dados foi desenvolvido um modelo preditivo e posteriormente as técnicas de interpretabilidade foram aplicadas. Os resultados mostraram que as técnicas conseguiram trazer mais entendimento sobre quais variáveis tiveram maior impacto para seu respectivo modelo, e até avaliar individualmente um consumidor, quantificando quanto cada variável contribuiu para a sua classificação final. Nesse sentido o SHAP se destacou sendo a técnica que trouxe maior variedade e qualidade de informações que contribuíram para se atingir avanço na interpretabilidade.
publishDate 2022
dc.date.none.fl_str_mv 2022-10-07
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/55/55137/tde-16122022-180337/
url https://www.teses.usp.br/teses/disponiveis/55/55137/tde-16122022-180337/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258231839129600