Improving art style classification with synthetic images from self-attention generative adversarial network.
| Ano de defesa: | 2022 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/3/3141/tde-25112022-091647/ |
Resumo: | Art is the means by which humanity has always expressed itself, as art oers a record of humanitys feelings, its ways of life and its conception of the world. Although we are fortunate to have a vast store of cultural wealth from past generations, the sheer number of artworks has become an obstacle to their categorization into styles. This research explores a strategy that maximizes the performance of style classifiers applied to works of art. Automatically classifying artworks into styles is quite challenging due to the relative lack of tagged data and the complexity of the class definitions. This complexity is manifested by the fact that some image augmentation techniques not only do not improve performance but may also degrade performance. We propose to resort to Adversary Generating Networks (GANs). Originally, GANs set out to create images capable of deceiving the human eye and making us believe that generated images are true images. The proposal here is not to create art, but rather to use this architecture as a data augmentation tool. To assess the impact of using GANs on image augmentation, we have studied performance improvements over EfficientNet B0, a state-of-the-art image classifier. In addition, we present a Class-by-Class Performance Analysis that can be useful in the study of other high-complexity image datasets. |
| id |
USP_22940b7e1cd28f3d3851e3e7b6466484 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-25112022-091647 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Improving art style classification with synthetic images from self-attention generative adversarial network.Melhorando a classificação de estilo de obras de arte com imagens sintéticas geradas a partir de redes adversárias generativas com mecanismo de autoatenção.Computer VvsionGenerative adversarial networksImage classificationImagem(Classificação)Redes adversárias geradorasVisão computacionalArt is the means by which humanity has always expressed itself, as art oers a record of humanitys feelings, its ways of life and its conception of the world. Although we are fortunate to have a vast store of cultural wealth from past generations, the sheer number of artworks has become an obstacle to their categorization into styles. This research explores a strategy that maximizes the performance of style classifiers applied to works of art. Automatically classifying artworks into styles is quite challenging due to the relative lack of tagged data and the complexity of the class definitions. This complexity is manifested by the fact that some image augmentation techniques not only do not improve performance but may also degrade performance. We propose to resort to Adversary Generating Networks (GANs). Originally, GANs set out to create images capable of deceiving the human eye and making us believe that generated images are true images. The proposal here is not to create art, but rather to use this architecture as a data augmentation tool. To assess the impact of using GANs on image augmentation, we have studied performance improvements over EfficientNet B0, a state-of-the-art image classifier. In addition, we present a Class-by-Class Performance Analysis that can be useful in the study of other high-complexity image datasets.Arte é o meio pelo qual a humanidade sempre usou para se expressar, tornando-a um registro de seus sentimentos, seus modos de vida e sua concepção de mundo. No entanto, embora tenhamos a sorte de ter uma vasta riqueza cultural proveniente de várias gerações, a quantidade de obras de arte tornou-se um impedimento para sua categorização em estilos. Esta pesquisa se propõe a estudar uma estratégia para maximizar o desempenho dos classificadores de estilo em obras de arte. A classificação automática das obras de arte em seus estilos é bastante desafiadora devido à relativa falta de dados rotulados e à complexidade das classes envolvidas. Essa complexidade é refletida no fato que algumas técnicas de augmentação de imagens não só não agregam ao desempenho do modelo mas também podem degradar seu desempenho. Por isso, introduzimos neste trabalho o estudo de Redes Adversárias Geradoras (GANs). Originalmente, as GANs foram propostas para criar imagens capazes de enganar o olho humano e nos fazer acreditar que as imagens geradas são imagens verdadeiras. Essa pesquisa não se propõe a criar arte, mas pretende usar essa arquitetura como uma ferramenta de ampliação de dados. Para avaliar o impacto do uso de GANs na augmentação das imagens, treinamos a EfficientNet B0 para verificar a melhoria no desempenho do EfficientNet B0, um classificador de ´ultima geração. Além disso, apresentamos a Análise de Desempenho de Classe por Classe, que deve ser útil no estudo de outros conjuntos de imagens de alta complexidade.Biblioteca Digitais de Teses e Dissertações da USPCozman, Fabio GagliardiPérez, Sarah Pires2022-05-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/3/3141/tde-25112022-091647/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-10-09T12:45:08Zoai:teses.usp.br:tde-25112022-091647Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T12:45:08Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Improving art style classification with synthetic images from self-attention generative adversarial network. Melhorando a classificação de estilo de obras de arte com imagens sintéticas geradas a partir de redes adversárias generativas com mecanismo de autoatenção. |
| title |
Improving art style classification with synthetic images from self-attention generative adversarial network. |
| spellingShingle |
Improving art style classification with synthetic images from self-attention generative adversarial network. Pérez, Sarah Pires Computer Vvsion Generative adversarial networks Image classification Imagem(Classificação) Redes adversárias geradoras Visão computacional |
| title_short |
Improving art style classification with synthetic images from self-attention generative adversarial network. |
| title_full |
Improving art style classification with synthetic images from self-attention generative adversarial network. |
| title_fullStr |
Improving art style classification with synthetic images from self-attention generative adversarial network. |
| title_full_unstemmed |
Improving art style classification with synthetic images from self-attention generative adversarial network. |
| title_sort |
Improving art style classification with synthetic images from self-attention generative adversarial network. |
| author |
Pérez, Sarah Pires |
| author_facet |
Pérez, Sarah Pires |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Cozman, Fabio Gagliardi |
| dc.contributor.author.fl_str_mv |
Pérez, Sarah Pires |
| dc.subject.por.fl_str_mv |
Computer Vvsion Generative adversarial networks Image classification Imagem(Classificação) Redes adversárias geradoras Visão computacional |
| topic |
Computer Vvsion Generative adversarial networks Image classification Imagem(Classificação) Redes adversárias geradoras Visão computacional |
| description |
Art is the means by which humanity has always expressed itself, as art oers a record of humanitys feelings, its ways of life and its conception of the world. Although we are fortunate to have a vast store of cultural wealth from past generations, the sheer number of artworks has become an obstacle to their categorization into styles. This research explores a strategy that maximizes the performance of style classifiers applied to works of art. Automatically classifying artworks into styles is quite challenging due to the relative lack of tagged data and the complexity of the class definitions. This complexity is manifested by the fact that some image augmentation techniques not only do not improve performance but may also degrade performance. We propose to resort to Adversary Generating Networks (GANs). Originally, GANs set out to create images capable of deceiving the human eye and making us believe that generated images are true images. The proposal here is not to create art, but rather to use this architecture as a data augmentation tool. To assess the impact of using GANs on image augmentation, we have studied performance improvements over EfficientNet B0, a state-of-the-art image classifier. In addition, we present a Class-by-Class Performance Analysis that can be useful in the study of other high-complexity image datasets. |
| publishDate |
2022 |
| dc.date.none.fl_str_mv |
2022-05-05 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/3/3141/tde-25112022-091647/ |
| url |
https://www.teses.usp.br/teses/disponiveis/3/3141/tde-25112022-091647/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1818279234174451712 |