A new approach for pediatric posterior fossa semantic segmentation in magnetic resonance images

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Dias, Larissa de Oliveira Penteado
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/45/45134/tde-08112022-071554/
Resumo: The analysis of brain magnetic resonance imaging (MRI) exams is an essential task for the diagnosis and treatment of various diseases. The manual examination of such images is time-consuming and prone to inter observer variability. Moreover, the analysis of neonatal and pediatric exams poses intrinsic challenges due to the smaller size of the brain structures and the greater inter patient variability, because of the childrens neurological development, especially during the first two years of life. Therefore, the development of automatic methods to perform the semantic segmentation of MRI data is important to aid the doctors at examining such images. In order to automatically obtain the segmentation of a MRI volume, there are both 2D and 3D methods. Fully Convolutional Neural Networks (FCN) have been presenting increasingly better results at the segmentation of both natural and medical images. In this project, we developed a new approach to perform the segmentation of the posterior fossa and the fourth ventricle regions on pediatric brain MRI data, using the FCN called LiviaNet, which is a patch 3D approach. These are the regions of occurence of the medulloblastoma, a common cancer that affects childrens brains. The identification of this tumor is of interest for the doctors from the Childrens Institute (HC-FMUSP). They provided 32 MRI volumes for this project, from children with ages ranging from less than a year to 18 years. Our method was able to identify the region of interest with a mean dice score of 0.74, thus showing the potential of the proposed approach.
id USP_2446bda73435158bb2b40ec86e144353
oai_identifier_str oai:teses.usp.br:tde-08112022-071554
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling A new approach for pediatric posterior fossa semantic segmentation in magnetic resonance imagesUma nova abordagem para segmentação semântica da fossa posterior em imagens pediátricas de ressonância magnéticaFossa posteriorFully convolutional neural networksMagnetic resonance imagingPediatric brain segmentationPosterior fossaRedes neurais totalmente convolucionaisRessonância magnéticaSegmentação de cérebro infantilSegmentação semânticaSemantic segmentationThe analysis of brain magnetic resonance imaging (MRI) exams is an essential task for the diagnosis and treatment of various diseases. The manual examination of such images is time-consuming and prone to inter observer variability. Moreover, the analysis of neonatal and pediatric exams poses intrinsic challenges due to the smaller size of the brain structures and the greater inter patient variability, because of the childrens neurological development, especially during the first two years of life. Therefore, the development of automatic methods to perform the semantic segmentation of MRI data is important to aid the doctors at examining such images. In order to automatically obtain the segmentation of a MRI volume, there are both 2D and 3D methods. Fully Convolutional Neural Networks (FCN) have been presenting increasingly better results at the segmentation of both natural and medical images. In this project, we developed a new approach to perform the segmentation of the posterior fossa and the fourth ventricle regions on pediatric brain MRI data, using the FCN called LiviaNet, which is a patch 3D approach. These are the regions of occurence of the medulloblastoma, a common cancer that affects childrens brains. The identification of this tumor is of interest for the doctors from the Childrens Institute (HC-FMUSP). They provided 32 MRI volumes for this project, from children with ages ranging from less than a year to 18 years. Our method was able to identify the region of interest with a mean dice score of 0.74, thus showing the potential of the proposed approach.A análise de exames de Ressonância Magnética (RM) cerebral é essencial para o diagnóstico e tratamento de diversas doenças. O estudo manual destas imagens é demorado e suscetvel a variações entre especialistas. Além disso, a análise de exames neonatais e pediátricos apresenta desafios intrnsecos devido ao menor tamanho das estruturas cerebrais e à maior variabilidade interpaciente, que ocorre por causa do desenvolvimento neurológico das crianças, principalmente durante os primeiros dois anos de vida. Deste modo, o desenvolvimento de métodos automáticos para segmentar os exames de RM é importante para auxiliar os médicos ao examinar estas imagens. Redes Neurais Totalmente Convolucionais (do inglês, FCN) têm apresentado resultados cada vez melhores na segmentação de ambas imagens naturais e médicas. Neste projeto, desenvolvemos uma nova abordagem para realizar a segmentação das regiões da fossa posterior e do quarto ventrculo em dados de ressonância magnética de cérebro pediátrica, utilizando a FCN denominada LiviaNet. Essas são as regiões de ocorrência do meduloblastoma, um câncer comum que afeta o cérebro de crianças. A identificação desse tumor é de interesse dos médicos do Instituto da Criança (HC-FMUSP). Eles forneceram 32 volumes de ressonância magnética para este projeto de crianças com idades variando de menos de um ano a 18 anos. Nosso método foi capaz de identificar as regiões de interesse atingindo um dice score médio de 0.74, mostrando, deste modo, o potencial da abordagem proposta.Biblioteca Digitais de Teses e Dissertações da USPCesar Junior, Roberto MarcondesDias, Larissa de Oliveira Penteado2022-10-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45134/tde-08112022-071554/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2022-11-17T22:24:09Zoai:teses.usp.br:tde-08112022-071554Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-11-17T22:24:09Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv A new approach for pediatric posterior fossa semantic segmentation in magnetic resonance images
Uma nova abordagem para segmentação semântica da fossa posterior em imagens pediátricas de ressonância magnética
title A new approach for pediatric posterior fossa semantic segmentation in magnetic resonance images
spellingShingle A new approach for pediatric posterior fossa semantic segmentation in magnetic resonance images
Dias, Larissa de Oliveira Penteado
Fossa posterior
Fully convolutional neural networks
Magnetic resonance imaging
Pediatric brain segmentation
Posterior fossa
Redes neurais totalmente convolucionais
Ressonância magnética
Segmentação de cérebro infantil
Segmentação semântica
Semantic segmentation
title_short A new approach for pediatric posterior fossa semantic segmentation in magnetic resonance images
title_full A new approach for pediatric posterior fossa semantic segmentation in magnetic resonance images
title_fullStr A new approach for pediatric posterior fossa semantic segmentation in magnetic resonance images
title_full_unstemmed A new approach for pediatric posterior fossa semantic segmentation in magnetic resonance images
title_sort A new approach for pediatric posterior fossa semantic segmentation in magnetic resonance images
author Dias, Larissa de Oliveira Penteado
author_facet Dias, Larissa de Oliveira Penteado
author_role author
dc.contributor.none.fl_str_mv Cesar Junior, Roberto Marcondes
dc.contributor.author.fl_str_mv Dias, Larissa de Oliveira Penteado
dc.subject.por.fl_str_mv Fossa posterior
Fully convolutional neural networks
Magnetic resonance imaging
Pediatric brain segmentation
Posterior fossa
Redes neurais totalmente convolucionais
Ressonância magnética
Segmentação de cérebro infantil
Segmentação semântica
Semantic segmentation
topic Fossa posterior
Fully convolutional neural networks
Magnetic resonance imaging
Pediatric brain segmentation
Posterior fossa
Redes neurais totalmente convolucionais
Ressonância magnética
Segmentação de cérebro infantil
Segmentação semântica
Semantic segmentation
description The analysis of brain magnetic resonance imaging (MRI) exams is an essential task for the diagnosis and treatment of various diseases. The manual examination of such images is time-consuming and prone to inter observer variability. Moreover, the analysis of neonatal and pediatric exams poses intrinsic challenges due to the smaller size of the brain structures and the greater inter patient variability, because of the childrens neurological development, especially during the first two years of life. Therefore, the development of automatic methods to perform the semantic segmentation of MRI data is important to aid the doctors at examining such images. In order to automatically obtain the segmentation of a MRI volume, there are both 2D and 3D methods. Fully Convolutional Neural Networks (FCN) have been presenting increasingly better results at the segmentation of both natural and medical images. In this project, we developed a new approach to perform the segmentation of the posterior fossa and the fourth ventricle regions on pediatric brain MRI data, using the FCN called LiviaNet, which is a patch 3D approach. These are the regions of occurence of the medulloblastoma, a common cancer that affects childrens brains. The identification of this tumor is of interest for the doctors from the Childrens Institute (HC-FMUSP). They provided 32 MRI volumes for this project, from children with ages ranging from less than a year to 18 years. Our method was able to identify the region of interest with a mean dice score of 0.74, thus showing the potential of the proposed approach.
publishDate 2022
dc.date.none.fl_str_mv 2022-10-03
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/45/45134/tde-08112022-071554/
url https://www.teses.usp.br/teses/disponiveis/45/45134/tde-08112022-071554/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257987986489344