A new approach for pediatric posterior fossa semantic segmentation in magnetic resonance images
| Ano de defesa: | 2022 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/45/45134/tde-08112022-071554/ |
Resumo: | The analysis of brain magnetic resonance imaging (MRI) exams is an essential task for the diagnosis and treatment of various diseases. The manual examination of such images is time-consuming and prone to inter observer variability. Moreover, the analysis of neonatal and pediatric exams poses intrinsic challenges due to the smaller size of the brain structures and the greater inter patient variability, because of the childrens neurological development, especially during the first two years of life. Therefore, the development of automatic methods to perform the semantic segmentation of MRI data is important to aid the doctors at examining such images. In order to automatically obtain the segmentation of a MRI volume, there are both 2D and 3D methods. Fully Convolutional Neural Networks (FCN) have been presenting increasingly better results at the segmentation of both natural and medical images. In this project, we developed a new approach to perform the segmentation of the posterior fossa and the fourth ventricle regions on pediatric brain MRI data, using the FCN called LiviaNet, which is a patch 3D approach. These are the regions of occurence of the medulloblastoma, a common cancer that affects childrens brains. The identification of this tumor is of interest for the doctors from the Childrens Institute (HC-FMUSP). They provided 32 MRI volumes for this project, from children with ages ranging from less than a year to 18 years. Our method was able to identify the region of interest with a mean dice score of 0.74, thus showing the potential of the proposed approach. |
| id |
USP_2446bda73435158bb2b40ec86e144353 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-08112022-071554 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
A new approach for pediatric posterior fossa semantic segmentation in magnetic resonance imagesUma nova abordagem para segmentação semântica da fossa posterior em imagens pediátricas de ressonância magnéticaFossa posteriorFully convolutional neural networksMagnetic resonance imagingPediatric brain segmentationPosterior fossaRedes neurais totalmente convolucionaisRessonância magnéticaSegmentação de cérebro infantilSegmentação semânticaSemantic segmentationThe analysis of brain magnetic resonance imaging (MRI) exams is an essential task for the diagnosis and treatment of various diseases. The manual examination of such images is time-consuming and prone to inter observer variability. Moreover, the analysis of neonatal and pediatric exams poses intrinsic challenges due to the smaller size of the brain structures and the greater inter patient variability, because of the childrens neurological development, especially during the first two years of life. Therefore, the development of automatic methods to perform the semantic segmentation of MRI data is important to aid the doctors at examining such images. In order to automatically obtain the segmentation of a MRI volume, there are both 2D and 3D methods. Fully Convolutional Neural Networks (FCN) have been presenting increasingly better results at the segmentation of both natural and medical images. In this project, we developed a new approach to perform the segmentation of the posterior fossa and the fourth ventricle regions on pediatric brain MRI data, using the FCN called LiviaNet, which is a patch 3D approach. These are the regions of occurence of the medulloblastoma, a common cancer that affects childrens brains. The identification of this tumor is of interest for the doctors from the Childrens Institute (HC-FMUSP). They provided 32 MRI volumes for this project, from children with ages ranging from less than a year to 18 years. Our method was able to identify the region of interest with a mean dice score of 0.74, thus showing the potential of the proposed approach.A análise de exames de Ressonância Magnética (RM) cerebral é essencial para o diagnóstico e tratamento de diversas doenças. O estudo manual destas imagens é demorado e suscetvel a variações entre especialistas. Além disso, a análise de exames neonatais e pediátricos apresenta desafios intrnsecos devido ao menor tamanho das estruturas cerebrais e à maior variabilidade interpaciente, que ocorre por causa do desenvolvimento neurológico das crianças, principalmente durante os primeiros dois anos de vida. Deste modo, o desenvolvimento de métodos automáticos para segmentar os exames de RM é importante para auxiliar os médicos ao examinar estas imagens. Redes Neurais Totalmente Convolucionais (do inglês, FCN) têm apresentado resultados cada vez melhores na segmentação de ambas imagens naturais e médicas. Neste projeto, desenvolvemos uma nova abordagem para realizar a segmentação das regiões da fossa posterior e do quarto ventrculo em dados de ressonância magnética de cérebro pediátrica, utilizando a FCN denominada LiviaNet. Essas são as regiões de ocorrência do meduloblastoma, um câncer comum que afeta o cérebro de crianças. A identificação desse tumor é de interesse dos médicos do Instituto da Criança (HC-FMUSP). Eles forneceram 32 volumes de ressonância magnética para este projeto de crianças com idades variando de menos de um ano a 18 anos. Nosso método foi capaz de identificar as regiões de interesse atingindo um dice score médio de 0.74, mostrando, deste modo, o potencial da abordagem proposta.Biblioteca Digitais de Teses e Dissertações da USPCesar Junior, Roberto MarcondesDias, Larissa de Oliveira Penteado2022-10-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45134/tde-08112022-071554/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2022-11-17T22:24:09Zoai:teses.usp.br:tde-08112022-071554Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-11-17T22:24:09Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
A new approach for pediatric posterior fossa semantic segmentation in magnetic resonance images Uma nova abordagem para segmentação semântica da fossa posterior em imagens pediátricas de ressonância magnética |
| title |
A new approach for pediatric posterior fossa semantic segmentation in magnetic resonance images |
| spellingShingle |
A new approach for pediatric posterior fossa semantic segmentation in magnetic resonance images Dias, Larissa de Oliveira Penteado Fossa posterior Fully convolutional neural networks Magnetic resonance imaging Pediatric brain segmentation Posterior fossa Redes neurais totalmente convolucionais Ressonância magnética Segmentação de cérebro infantil Segmentação semântica Semantic segmentation |
| title_short |
A new approach for pediatric posterior fossa semantic segmentation in magnetic resonance images |
| title_full |
A new approach for pediatric posterior fossa semantic segmentation in magnetic resonance images |
| title_fullStr |
A new approach for pediatric posterior fossa semantic segmentation in magnetic resonance images |
| title_full_unstemmed |
A new approach for pediatric posterior fossa semantic segmentation in magnetic resonance images |
| title_sort |
A new approach for pediatric posterior fossa semantic segmentation in magnetic resonance images |
| author |
Dias, Larissa de Oliveira Penteado |
| author_facet |
Dias, Larissa de Oliveira Penteado |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Cesar Junior, Roberto Marcondes |
| dc.contributor.author.fl_str_mv |
Dias, Larissa de Oliveira Penteado |
| dc.subject.por.fl_str_mv |
Fossa posterior Fully convolutional neural networks Magnetic resonance imaging Pediatric brain segmentation Posterior fossa Redes neurais totalmente convolucionais Ressonância magnética Segmentação de cérebro infantil Segmentação semântica Semantic segmentation |
| topic |
Fossa posterior Fully convolutional neural networks Magnetic resonance imaging Pediatric brain segmentation Posterior fossa Redes neurais totalmente convolucionais Ressonância magnética Segmentação de cérebro infantil Segmentação semântica Semantic segmentation |
| description |
The analysis of brain magnetic resonance imaging (MRI) exams is an essential task for the diagnosis and treatment of various diseases. The manual examination of such images is time-consuming and prone to inter observer variability. Moreover, the analysis of neonatal and pediatric exams poses intrinsic challenges due to the smaller size of the brain structures and the greater inter patient variability, because of the childrens neurological development, especially during the first two years of life. Therefore, the development of automatic methods to perform the semantic segmentation of MRI data is important to aid the doctors at examining such images. In order to automatically obtain the segmentation of a MRI volume, there are both 2D and 3D methods. Fully Convolutional Neural Networks (FCN) have been presenting increasingly better results at the segmentation of both natural and medical images. In this project, we developed a new approach to perform the segmentation of the posterior fossa and the fourth ventricle regions on pediatric brain MRI data, using the FCN called LiviaNet, which is a patch 3D approach. These are the regions of occurence of the medulloblastoma, a common cancer that affects childrens brains. The identification of this tumor is of interest for the doctors from the Childrens Institute (HC-FMUSP). They provided 32 MRI volumes for this project, from children with ages ranging from less than a year to 18 years. Our method was able to identify the region of interest with a mean dice score of 0.74, thus showing the potential of the proposed approach. |
| publishDate |
2022 |
| dc.date.none.fl_str_mv |
2022-10-03 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/45/45134/tde-08112022-071554/ |
| url |
https://www.teses.usp.br/teses/disponiveis/45/45134/tde-08112022-071554/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1815257987986489344 |