Advanced strategies in soybean breeding for enhanced oil, yield and balanced protein in the face of climate change
| Ano de defesa: | 2024 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/11/11137/tde-13032025-142733/ |
Resumo: | In an era marked by the pressures of a rapidly expanding global population and escalating environmental challenges, the imperative for sustainable agricultural practices has never been more critical. With the global population projected to reach 9.8 billion by 2050, the demand for food, particularly nutrient-rich sources like soybeans (Glycine max (L.) Merrill), is set to surge dramatically. Soybeans, a pivotal crop of global agriculture, play an indirect, yet a crucial role in combating hunger and malnutrition through their significant contributions to the world\'s protein and oil reserves, while also bolstering economic and environmental sustainability. However, the cultivation of soybeans is confronted with multifaceted challenges, notably the threat of environmental stressors such as drought, which are exacerbated by climate change. These conditions not only diminish yields but also impair the quality of soybeans, affecting important traits like protein and oil content. Addressing these issues necessitates a profound understanding of soybean\'s physiological and genetic mechanisms of resilience against such stressors. Concurrently, the evolving global demand for soybeans, fueled by their varied applications from nutrition to biofuel production, necessitates the optimization of yield, oil, and protein content. This scenario presents unique breeding challenges that require innovative solutions. The integration of advanced genomic research, bioinformatics, and machine learning emerges as a pivotal strategy, offering new opportunities to enhance crop traits while upholding principles of sustainability and stewardship. This study undertakes a comprehensive examination of the challenges and opportunities in soybean breeding, focusing on mitigating the impacts of environmental stressors like drought and leveraging genetic and agronomic advancements to optimize yield and quality. |
| id |
USP_25db6cb458f0fe08f58c42626cbcc574 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-13032025-142733 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Advanced strategies in soybean breeding for enhanced oil, yield and balanced protein in the face of climate changeEstratégias avançadas no melhoramento de soja para melhoria do óleo, rendimento e proteína equilibrada diante das mudanças climáticasGlycine maxGlycine maxAprendizado de máquinaBioinformáticaBioinformaticsClusterizaçãoClusterizationDrought toleranceMachine learningPredição genômicaTolerância à secaIn an era marked by the pressures of a rapidly expanding global population and escalating environmental challenges, the imperative for sustainable agricultural practices has never been more critical. With the global population projected to reach 9.8 billion by 2050, the demand for food, particularly nutrient-rich sources like soybeans (Glycine max (L.) Merrill), is set to surge dramatically. Soybeans, a pivotal crop of global agriculture, play an indirect, yet a crucial role in combating hunger and malnutrition through their significant contributions to the world\'s protein and oil reserves, while also bolstering economic and environmental sustainability. However, the cultivation of soybeans is confronted with multifaceted challenges, notably the threat of environmental stressors such as drought, which are exacerbated by climate change. These conditions not only diminish yields but also impair the quality of soybeans, affecting important traits like protein and oil content. Addressing these issues necessitates a profound understanding of soybean\'s physiological and genetic mechanisms of resilience against such stressors. Concurrently, the evolving global demand for soybeans, fueled by their varied applications from nutrition to biofuel production, necessitates the optimization of yield, oil, and protein content. This scenario presents unique breeding challenges that require innovative solutions. The integration of advanced genomic research, bioinformatics, and machine learning emerges as a pivotal strategy, offering new opportunities to enhance crop traits while upholding principles of sustainability and stewardship. This study undertakes a comprehensive examination of the challenges and opportunities in soybean breeding, focusing on mitigating the impacts of environmental stressors like drought and leveraging genetic and agronomic advancements to optimize yield and quality.Em uma era marcada pelas pressões de uma população global em rápida expansão e desafios ambientais crescentes, o imperativo por práticas agrícolas sustentáveis nunca foi tão crítico. Com a população mundial projetada para atingir 9,8 bilhões até 2050, a demanda por alimentos, particularmente fontes ricas em nutrientes como a soja (Glycine max (L.) Merrill), está prestes a aumentar dramaticamente. A soja, uma cultura fundamental da agricultura global, desempenha um papel indireto, mas crucial no combate à fome e à desnutrição por meio de suas contribuições significativas para as reservas mundiais de proteínas e óleo, ao mesmo tempo que reforça a sustentabilidade econômica e ambiental. No entanto, o cultivo da soja enfrenta desafios multifacetados, notavelmente a ameaça de estressores ambientais como a seca, que são exacerbados pelas mudanças climáticas. Essas condições não apenas diminuem os rendimentos, mas também prejudicam a qualidade da soja, afetando características importantes como o conteúdo de proteínas e óleo. Abordar essas questões exige um entendimento profundo dos mecanismos fisiológicos e genéticos de resiliência da soja contra tais estressores. Paralelamente, a demanda global crescente por soja, impulsionada por suas variadas aplicações, desde nutrição até a produção de biocombustíveis, necessita da otimização do rendimento, do conteúdo de óleo e de proteínas. Esse cenário apresenta desafios únicos de melhoramento que requerem soluções inovadoras. A integração de pesquisas genômicas avançadas, bioinformática e aprendizado de máquinas emergem como uma estratégia fundamental, oferecendo novas oportunidades para aprimorar as características das culturas enquanto se mantêm os princípios de sustentabilidade e responsabilidade. Este estudo empreende um exame abrangente dos desafios e oportunidades no melhoramento da soja, com foco em mitigar os impactos de estressores ambientais como a seca e alavancar avanços genéticos e agronômicos para otimizar o rendimento e a qualidade.Biblioteca Digitais de Teses e Dissertações da USPPinheiro, Jose BaldinFagundes, Talieisse Gomes2024-04-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/11/11137/tde-13032025-142733/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-03-18T14:47:04Zoai:teses.usp.br:tde-13032025-142733Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-03-18T14:47:04Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Advanced strategies in soybean breeding for enhanced oil, yield and balanced protein in the face of climate change Estratégias avançadas no melhoramento de soja para melhoria do óleo, rendimento e proteína equilibrada diante das mudanças climáticas |
| title |
Advanced strategies in soybean breeding for enhanced oil, yield and balanced protein in the face of climate change |
| spellingShingle |
Advanced strategies in soybean breeding for enhanced oil, yield and balanced protein in the face of climate change Fagundes, Talieisse Gomes Glycine max Glycine max Aprendizado de máquina Bioinformática Bioinformatics Clusterização Clusterization Drought tolerance Machine learning Predição genômica Tolerância à seca |
| title_short |
Advanced strategies in soybean breeding for enhanced oil, yield and balanced protein in the face of climate change |
| title_full |
Advanced strategies in soybean breeding for enhanced oil, yield and balanced protein in the face of climate change |
| title_fullStr |
Advanced strategies in soybean breeding for enhanced oil, yield and balanced protein in the face of climate change |
| title_full_unstemmed |
Advanced strategies in soybean breeding for enhanced oil, yield and balanced protein in the face of climate change |
| title_sort |
Advanced strategies in soybean breeding for enhanced oil, yield and balanced protein in the face of climate change |
| author |
Fagundes, Talieisse Gomes |
| author_facet |
Fagundes, Talieisse Gomes |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Pinheiro, Jose Baldin |
| dc.contributor.author.fl_str_mv |
Fagundes, Talieisse Gomes |
| dc.subject.por.fl_str_mv |
Glycine max Glycine max Aprendizado de máquina Bioinformática Bioinformatics Clusterização Clusterization Drought tolerance Machine learning Predição genômica Tolerância à seca |
| topic |
Glycine max Glycine max Aprendizado de máquina Bioinformática Bioinformatics Clusterização Clusterization Drought tolerance Machine learning Predição genômica Tolerância à seca |
| description |
In an era marked by the pressures of a rapidly expanding global population and escalating environmental challenges, the imperative for sustainable agricultural practices has never been more critical. With the global population projected to reach 9.8 billion by 2050, the demand for food, particularly nutrient-rich sources like soybeans (Glycine max (L.) Merrill), is set to surge dramatically. Soybeans, a pivotal crop of global agriculture, play an indirect, yet a crucial role in combating hunger and malnutrition through their significant contributions to the world\'s protein and oil reserves, while also bolstering economic and environmental sustainability. However, the cultivation of soybeans is confronted with multifaceted challenges, notably the threat of environmental stressors such as drought, which are exacerbated by climate change. These conditions not only diminish yields but also impair the quality of soybeans, affecting important traits like protein and oil content. Addressing these issues necessitates a profound understanding of soybean\'s physiological and genetic mechanisms of resilience against such stressors. Concurrently, the evolving global demand for soybeans, fueled by their varied applications from nutrition to biofuel production, necessitates the optimization of yield, oil, and protein content. This scenario presents unique breeding challenges that require innovative solutions. The integration of advanced genomic research, bioinformatics, and machine learning emerges as a pivotal strategy, offering new opportunities to enhance crop traits while upholding principles of sustainability and stewardship. This study undertakes a comprehensive examination of the challenges and opportunities in soybean breeding, focusing on mitigating the impacts of environmental stressors like drought and leveraging genetic and agronomic advancements to optimize yield and quality. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-04-11 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/11/11137/tde-13032025-142733/ |
| url |
https://www.teses.usp.br/teses/disponiveis/11/11137/tde-13032025-142733/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1839839145106604032 |