Certas deformacoes nao-comutativas do toro e sua k-teoria
| Ano de defesa: | 1993 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://teses.usp.br/teses/disponiveis/45/45131/tde-20220712-113155/ |
Resumo: | Para cada 'ALFA' > 'OU IGUAL' 0 define-se 'B ALFA' como sendo a c*-algebra gerada por dois unitarios 'U IND.ALFA' e um auto-adjunto 'H IND.ALFA' tais que 'MODULO IND.ALFA MODULO' < 'OU IGUAL' 'ALFA' e 'U IND.ALFA' 'V IND.ALFA' 'U* IND.ALFA' 'V* IND.ALFA' = 'E POT.IH 'alfa'. NESTE TRABALHO PROVAMOS QUE A FAMILIA ('b ind.Alfa') 'ind.Alfa' 'pertence' [0 'infinito'] ESTENDE A FAMILIA DOS SOFT TORUS COM AS MESMAS PROPRIEDADES BASICAS, ISTO E, QUE PARA CADA 'alfa ind.0' O CAMPO DE C*-ALGEBRA (B 'ind.Alfa') 'alfa' 'pertence' [0, 'alfa' ZERO] E CONTINUO E CADA B 'ind.Alfa' E PRODUTO CRUZADO DE UMA C*-ALGEBRA HOMOTOPICAMENTE EQUIVALENTE AC ('s pot.1') POR Z. MOSTRAMOS ENTAO QUE OS K-GRUPOS DE 'b alfa' SAO ISOMORFOS A Z 'soma direta' Z. APLICANDO RESULTADOS DA TERIA DAS ALGEBRAS DE ROTACAO DEMONSTRAMOS QUE TODO ELEMENTO POSITIVO (N,M) DE 'k ind.0' ('b ind.Alfa') SATISFAZ /M/'alfa' < 'ou igual' 2 'pi' n. Como consequencia segue que estas c*-algebras nao sao todas homotopicamente equivalentes entre si, apesar de terem os mesmos k-grupos |
| id |
USP_26f8ec0437a8cff87bb86e8c92b532a4 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-20220712-113155 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Certas deformacoes nao-comutativas do toro e sua k-teorianot availableÁlgebras De BanachAnéis E Álgebras AssociativosPara cada 'ALFA' > 'OU IGUAL' 0 define-se 'B ALFA' como sendo a c*-algebra gerada por dois unitarios 'U IND.ALFA' e um auto-adjunto 'H IND.ALFA' tais que 'MODULO IND.ALFA MODULO' < 'OU IGUAL' 'ALFA' e 'U IND.ALFA' 'V IND.ALFA' 'U* IND.ALFA' 'V* IND.ALFA' = 'E POT.IH 'alfa'. NESTE TRABALHO PROVAMOS QUE A FAMILIA ('b ind.Alfa') 'ind.Alfa' 'pertence' [0 'infinito'] ESTENDE A FAMILIA DOS SOFT TORUS COM AS MESMAS PROPRIEDADES BASICAS, ISTO E, QUE PARA CADA 'alfa ind.0' O CAMPO DE C*-ALGEBRA (B 'ind.Alfa') 'alfa' 'pertence' [0, 'alfa' ZERO] E CONTINUO E CADA B 'ind.Alfa' E PRODUTO CRUZADO DE UMA C*-ALGEBRA HOMOTOPICAMENTE EQUIVALENTE AC ('s pot.1') POR Z. MOSTRAMOS ENTAO QUE OS K-GRUPOS DE 'b alfa' SAO ISOMORFOS A Z 'soma direta' Z. APLICANDO RESULTADOS DA TERIA DAS ALGEBRAS DE ROTACAO DEMONSTRAMOS QUE TODO ELEMENTO POSITIVO (N,M) DE 'k ind.0' ('b ind.Alfa') SATISFAZ /M/'alfa' < 'ou igual' 2 'pi' n. Como consequencia segue que estas c*-algebras nao sao todas homotopicamente equivalentes entre si, apesar de terem os mesmos k-gruposnot availableBiblioteca Digitais de Teses e Dissertações da USPExel Filho, RuyCerri, Cristina1993-10-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://teses.usp.br/teses/disponiveis/45/45131/tde-20220712-113155/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2022-07-13T18:08:39Zoai:teses.usp.br:tde-20220712-113155Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-07-13T18:08:39Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Certas deformacoes nao-comutativas do toro e sua k-teoria not available |
| title |
Certas deformacoes nao-comutativas do toro e sua k-teoria |
| spellingShingle |
Certas deformacoes nao-comutativas do toro e sua k-teoria Cerri, Cristina Álgebras De Banach Anéis E Álgebras Associativos |
| title_short |
Certas deformacoes nao-comutativas do toro e sua k-teoria |
| title_full |
Certas deformacoes nao-comutativas do toro e sua k-teoria |
| title_fullStr |
Certas deformacoes nao-comutativas do toro e sua k-teoria |
| title_full_unstemmed |
Certas deformacoes nao-comutativas do toro e sua k-teoria |
| title_sort |
Certas deformacoes nao-comutativas do toro e sua k-teoria |
| author |
Cerri, Cristina |
| author_facet |
Cerri, Cristina |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Exel Filho, Ruy |
| dc.contributor.author.fl_str_mv |
Cerri, Cristina |
| dc.subject.por.fl_str_mv |
Álgebras De Banach Anéis E Álgebras Associativos |
| topic |
Álgebras De Banach Anéis E Álgebras Associativos |
| description |
Para cada 'ALFA' > 'OU IGUAL' 0 define-se 'B ALFA' como sendo a c*-algebra gerada por dois unitarios 'U IND.ALFA' e um auto-adjunto 'H IND.ALFA' tais que 'MODULO IND.ALFA MODULO' < 'OU IGUAL' 'ALFA' e 'U IND.ALFA' 'V IND.ALFA' 'U* IND.ALFA' 'V* IND.ALFA' = 'E POT.IH 'alfa'. NESTE TRABALHO PROVAMOS QUE A FAMILIA ('b ind.Alfa') 'ind.Alfa' 'pertence' [0 'infinito'] ESTENDE A FAMILIA DOS SOFT TORUS COM AS MESMAS PROPRIEDADES BASICAS, ISTO E, QUE PARA CADA 'alfa ind.0' O CAMPO DE C*-ALGEBRA (B 'ind.Alfa') 'alfa' 'pertence' [0, 'alfa' ZERO] E CONTINUO E CADA B 'ind.Alfa' E PRODUTO CRUZADO DE UMA C*-ALGEBRA HOMOTOPICAMENTE EQUIVALENTE AC ('s pot.1') POR Z. MOSTRAMOS ENTAO QUE OS K-GRUPOS DE 'b alfa' SAO ISOMORFOS A Z 'soma direta' Z. APLICANDO RESULTADOS DA TERIA DAS ALGEBRAS DE ROTACAO DEMONSTRAMOS QUE TODO ELEMENTO POSITIVO (N,M) DE 'k ind.0' ('b ind.Alfa') SATISFAZ /M/'alfa' < 'ou igual' 2 'pi' n. Como consequencia segue que estas c*-algebras nao sao todas homotopicamente equivalentes entre si, apesar de terem os mesmos k-grupos |
| publishDate |
1993 |
| dc.date.none.fl_str_mv |
1993-10-01 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://teses.usp.br/teses/disponiveis/45/45131/tde-20220712-113155/ |
| url |
https://teses.usp.br/teses/disponiveis/45/45131/tde-20220712-113155/ |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1815258340289150976 |