Exportação concluída — 

Certas deformacoes nao-comutativas do toro e sua k-teoria

Detalhes bibliográficos
Ano de defesa: 1993
Autor(a) principal: Cerri, Cristina
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://teses.usp.br/teses/disponiveis/45/45131/tde-20220712-113155/
Resumo: Para cada 'ALFA' > 'OU IGUAL' 0 define-se 'B ALFA' como sendo a c*-algebra gerada por dois unitarios 'U IND.ALFA' e um auto-adjunto 'H IND.ALFA' tais que 'MODULO IND.ALFA MODULO' < 'OU IGUAL' 'ALFA' e 'U IND.ALFA' 'V IND.ALFA' 'U* IND.ALFA' 'V* IND.ALFA' = 'E POT.IH 'alfa'. NESTE TRABALHO PROVAMOS QUE A FAMILIA ('b ind.Alfa') 'ind.Alfa' 'pertence' [0 'infinito'] ESTENDE A FAMILIA DOS SOFT TORUS COM AS MESMAS PROPRIEDADES BASICAS, ISTO E, QUE PARA CADA 'alfa ind.0' O CAMPO DE C*-ALGEBRA (B 'ind.Alfa') 'alfa' 'pertence' [0, 'alfa' ZERO] E CONTINUO E CADA B 'ind.Alfa' E PRODUTO CRUZADO DE UMA C*-ALGEBRA HOMOTOPICAMENTE EQUIVALENTE AC ('s pot.1') POR Z. MOSTRAMOS ENTAO QUE OS K-GRUPOS DE 'b alfa' SAO ISOMORFOS A Z 'soma direta' Z. APLICANDO RESULTADOS DA TERIA DAS ALGEBRAS DE ROTACAO DEMONSTRAMOS QUE TODO ELEMENTO POSITIVO (N,M) DE 'k ind.0' ('b ind.Alfa') SATISFAZ /M/'alfa' < 'ou igual' 2 'pi' n. Como consequencia segue que estas c*-algebras nao sao todas homotopicamente equivalentes entre si, apesar de terem os mesmos k-grupos
id USP_26f8ec0437a8cff87bb86e8c92b532a4
oai_identifier_str oai:teses.usp.br:tde-20220712-113155
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Certas deformacoes nao-comutativas do toro e sua k-teorianot availableÁlgebras De BanachAnéis E Álgebras AssociativosPara cada 'ALFA' > 'OU IGUAL' 0 define-se 'B ALFA' como sendo a c*-algebra gerada por dois unitarios 'U IND.ALFA' e um auto-adjunto 'H IND.ALFA' tais que 'MODULO IND.ALFA MODULO' < 'OU IGUAL' 'ALFA' e 'U IND.ALFA' 'V IND.ALFA' 'U* IND.ALFA' 'V* IND.ALFA' = 'E POT.IH 'alfa'. NESTE TRABALHO PROVAMOS QUE A FAMILIA ('b ind.Alfa') 'ind.Alfa' 'pertence' [0 'infinito'] ESTENDE A FAMILIA DOS SOFT TORUS COM AS MESMAS PROPRIEDADES BASICAS, ISTO E, QUE PARA CADA 'alfa ind.0' O CAMPO DE C*-ALGEBRA (B 'ind.Alfa') 'alfa' 'pertence' [0, 'alfa' ZERO] E CONTINUO E CADA B 'ind.Alfa' E PRODUTO CRUZADO DE UMA C*-ALGEBRA HOMOTOPICAMENTE EQUIVALENTE AC ('s pot.1') POR Z. MOSTRAMOS ENTAO QUE OS K-GRUPOS DE 'b alfa' SAO ISOMORFOS A Z 'soma direta' Z. APLICANDO RESULTADOS DA TERIA DAS ALGEBRAS DE ROTACAO DEMONSTRAMOS QUE TODO ELEMENTO POSITIVO (N,M) DE 'k ind.0' ('b ind.Alfa') SATISFAZ /M/'alfa' < 'ou igual' 2 'pi' n. Como consequencia segue que estas c*-algebras nao sao todas homotopicamente equivalentes entre si, apesar de terem os mesmos k-gruposnot availableBiblioteca Digitais de Teses e Dissertações da USPExel Filho, RuyCerri, Cristina1993-10-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://teses.usp.br/teses/disponiveis/45/45131/tde-20220712-113155/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2022-07-13T18:08:39Zoai:teses.usp.br:tde-20220712-113155Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-07-13T18:08:39Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Certas deformacoes nao-comutativas do toro e sua k-teoria
not available
title Certas deformacoes nao-comutativas do toro e sua k-teoria
spellingShingle Certas deformacoes nao-comutativas do toro e sua k-teoria
Cerri, Cristina
Álgebras De Banach
Anéis E Álgebras Associativos
title_short Certas deformacoes nao-comutativas do toro e sua k-teoria
title_full Certas deformacoes nao-comutativas do toro e sua k-teoria
title_fullStr Certas deformacoes nao-comutativas do toro e sua k-teoria
title_full_unstemmed Certas deformacoes nao-comutativas do toro e sua k-teoria
title_sort Certas deformacoes nao-comutativas do toro e sua k-teoria
author Cerri, Cristina
author_facet Cerri, Cristina
author_role author
dc.contributor.none.fl_str_mv Exel Filho, Ruy
dc.contributor.author.fl_str_mv Cerri, Cristina
dc.subject.por.fl_str_mv Álgebras De Banach
Anéis E Álgebras Associativos
topic Álgebras De Banach
Anéis E Álgebras Associativos
description Para cada 'ALFA' > 'OU IGUAL' 0 define-se 'B ALFA' como sendo a c*-algebra gerada por dois unitarios 'U IND.ALFA' e um auto-adjunto 'H IND.ALFA' tais que 'MODULO IND.ALFA MODULO' < 'OU IGUAL' 'ALFA' e 'U IND.ALFA' 'V IND.ALFA' 'U* IND.ALFA' 'V* IND.ALFA' = 'E POT.IH 'alfa'. NESTE TRABALHO PROVAMOS QUE A FAMILIA ('b ind.Alfa') 'ind.Alfa' 'pertence' [0 'infinito'] ESTENDE A FAMILIA DOS SOFT TORUS COM AS MESMAS PROPRIEDADES BASICAS, ISTO E, QUE PARA CADA 'alfa ind.0' O CAMPO DE C*-ALGEBRA (B 'ind.Alfa') 'alfa' 'pertence' [0, 'alfa' ZERO] E CONTINUO E CADA B 'ind.Alfa' E PRODUTO CRUZADO DE UMA C*-ALGEBRA HOMOTOPICAMENTE EQUIVALENTE AC ('s pot.1') POR Z. MOSTRAMOS ENTAO QUE OS K-GRUPOS DE 'b alfa' SAO ISOMORFOS A Z 'soma direta' Z. APLICANDO RESULTADOS DA TERIA DAS ALGEBRAS DE ROTACAO DEMONSTRAMOS QUE TODO ELEMENTO POSITIVO (N,M) DE 'k ind.0' ('b ind.Alfa') SATISFAZ /M/'alfa' < 'ou igual' 2 'pi' n. Como consequencia segue que estas c*-algebras nao sao todas homotopicamente equivalentes entre si, apesar de terem os mesmos k-grupos
publishDate 1993
dc.date.none.fl_str_mv 1993-10-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://teses.usp.br/teses/disponiveis/45/45131/tde-20220712-113155/
url https://teses.usp.br/teses/disponiveis/45/45131/tde-20220712-113155/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258340289150976