Aproximação da norma de corte via desigualdade de Grothendieck
| Ano de defesa: | 2014 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.teses.usp.br/teses/disponiveis/45/45131/tde-26042019-042143/ |
Resumo: | Neste trabalho, objetivamos apresentar o Teorema de Alon e Naor, o qual afirma que existe um algoritmo de aproximação para a norma de corte de uma matriz qualquer, sendo que a garantia de desempenho desse algoritmo é a inversa da constante de Grothendieck. Introduzimos a norma de corte de uma matriz e exibimos algumas de suas propriedades. Uma delas é que a norma de corte é equivalente a uma outra norma, que é valor ótimo de um programa inteiro quadrático que pode ser relaxado por um programa semidefinido. Além do Teorema de Alon e Naor, construímos mais dois algoritmos de aproximação para a norma de corte. Ambos possuem garantia de desempenho inferior que a do Teorema de Alon e Naor, porém as técnicas que foram utilizadas para obter tais algoritmos são interessantes. Enunciamos a Desigualdade e Grothendieck reformulada por Lindenstrauss e Pelcýnski e mostramos uma cota superior para a constante de Grothendieck que se baseia no Argumento de Krivine. Finalmente, apresentamos três aplicações do Teorema de Alon e Naor: em corte máximo de um grafo; na versão algorítmica do Lema da Regularidade de Szemerédi; e no Teorema de Frieze e Kannan. |
| id |
USP_27e46a9861c3703a4f0e17a86d35ecae |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-26042019-042143 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Aproximação da norma de corte via desigualdade de GrothendieckApproximation of the cut-norm via Grothendieck\'s inequalityAlgoritmos de aproximaçãoApproximation algorithmCut-normDesigualdade de GrothendieckGrothendieck's inequalityNorma de cortePrograma semidefinidoSemidefinite programmingNeste trabalho, objetivamos apresentar o Teorema de Alon e Naor, o qual afirma que existe um algoritmo de aproximação para a norma de corte de uma matriz qualquer, sendo que a garantia de desempenho desse algoritmo é a inversa da constante de Grothendieck. Introduzimos a norma de corte de uma matriz e exibimos algumas de suas propriedades. Uma delas é que a norma de corte é equivalente a uma outra norma, que é valor ótimo de um programa inteiro quadrático que pode ser relaxado por um programa semidefinido. Além do Teorema de Alon e Naor, construímos mais dois algoritmos de aproximação para a norma de corte. Ambos possuem garantia de desempenho inferior que a do Teorema de Alon e Naor, porém as técnicas que foram utilizadas para obter tais algoritmos são interessantes. Enunciamos a Desigualdade e Grothendieck reformulada por Lindenstrauss e Pelcýnski e mostramos uma cota superior para a constante de Grothendieck que se baseia no Argumento de Krivine. Finalmente, apresentamos três aplicações do Teorema de Alon e Naor: em corte máximo de um grafo; na versão algorítmica do Lema da Regularidade de Szemerédi; e no Teorema de Frieze e Kannan.In this work, our objective is to present Alon and Naor\'s Theorem, which states that there exists an approximation algorithm for cut-norm of any matrix and that the approximations guarantee of the algorithm is the inverse of the Grothendieck\'s constant. We introduce the cut-norm of a matrix and we show some of its properties. One is that the cut-norm is equivalent of some other norm which is the optimum value of quadratic integer program which can be relaxed for a semidefinite program. Beyond Alon and Naor\'s Theorem, we construct two more approximation algorithm for cut-norm. The approximation guarantee of both is inferior to the Alon and Naor\'s Theorem, but the techniques for obtaining such algorithms is interesting. We show Grothendieck\'s Inequality reformulated by Lindenstrauss e Pelcýnski and we show an upper bound for the Grothendieck\'s constant which is based on Krivine\'s Argument. Furthermore, we show three applications of Alon and Naor\'s Theorem: Maximum cut of a graph, an algorithmic version of Szemerédi Regularity Lemma, and Frieze and Kannan\'s Theorem.Biblioteca Digitais de Teses e Dissertações da USPKohayakawa, YoshiharuEndo, Eric Ossami2014-07-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45131/tde-26042019-042143/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2019-06-07T18:00:40Zoai:teses.usp.br:tde-26042019-042143Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-06-07T18:00:40Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Aproximação da norma de corte via desigualdade de Grothendieck Approximation of the cut-norm via Grothendieck\'s inequality |
| title |
Aproximação da norma de corte via desigualdade de Grothendieck |
| spellingShingle |
Aproximação da norma de corte via desigualdade de Grothendieck Endo, Eric Ossami Algoritmos de aproximação Approximation algorithm Cut-norm Desigualdade de Grothendieck Grothendieck's inequality Norma de corte Programa semidefinido Semidefinite programming |
| title_short |
Aproximação da norma de corte via desigualdade de Grothendieck |
| title_full |
Aproximação da norma de corte via desigualdade de Grothendieck |
| title_fullStr |
Aproximação da norma de corte via desigualdade de Grothendieck |
| title_full_unstemmed |
Aproximação da norma de corte via desigualdade de Grothendieck |
| title_sort |
Aproximação da norma de corte via desigualdade de Grothendieck |
| author |
Endo, Eric Ossami |
| author_facet |
Endo, Eric Ossami |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Kohayakawa, Yoshiharu |
| dc.contributor.author.fl_str_mv |
Endo, Eric Ossami |
| dc.subject.por.fl_str_mv |
Algoritmos de aproximação Approximation algorithm Cut-norm Desigualdade de Grothendieck Grothendieck's inequality Norma de corte Programa semidefinido Semidefinite programming |
| topic |
Algoritmos de aproximação Approximation algorithm Cut-norm Desigualdade de Grothendieck Grothendieck's inequality Norma de corte Programa semidefinido Semidefinite programming |
| description |
Neste trabalho, objetivamos apresentar o Teorema de Alon e Naor, o qual afirma que existe um algoritmo de aproximação para a norma de corte de uma matriz qualquer, sendo que a garantia de desempenho desse algoritmo é a inversa da constante de Grothendieck. Introduzimos a norma de corte de uma matriz e exibimos algumas de suas propriedades. Uma delas é que a norma de corte é equivalente a uma outra norma, que é valor ótimo de um programa inteiro quadrático que pode ser relaxado por um programa semidefinido. Além do Teorema de Alon e Naor, construímos mais dois algoritmos de aproximação para a norma de corte. Ambos possuem garantia de desempenho inferior que a do Teorema de Alon e Naor, porém as técnicas que foram utilizadas para obter tais algoritmos são interessantes. Enunciamos a Desigualdade e Grothendieck reformulada por Lindenstrauss e Pelcýnski e mostramos uma cota superior para a constante de Grothendieck que se baseia no Argumento de Krivine. Finalmente, apresentamos três aplicações do Teorema de Alon e Naor: em corte máximo de um grafo; na versão algorítmica do Lema da Regularidade de Szemerédi; e no Teorema de Frieze e Kannan. |
| publishDate |
2014 |
| dc.date.none.fl_str_mv |
2014-07-17 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/45/45131/tde-26042019-042143/ |
| url |
http://www.teses.usp.br/teses/disponiveis/45/45131/tde-26042019-042143/ |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1815258461820157952 |