Desenvolvimento de preditores para recomendação automática de produtos.
| Ano de defesa: | 2013 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.teses.usp.br/teses/disponiveis/3/3152/tde-22052014-232901/ |
Resumo: | Com o avanço da internet, novos tipos de negócios surgiram. Por exemplo, o sistema de anúncios online: produtores de sites e diversos outros conteúdos podem dedicar em uma parte qualquer de sua página um espaço para a impressão de anúncios de diversas lojas em troca de um valor oferecido pelo anunciante. É neste contexto que este trabalho se insere. O objetivo principal é o desenvolvimento de algoritmos que preveem a probabilidade que um dado usuário tem de se interessar e clicar em um anúncio a que está sendo exposto. Este problema é conhecido como predição de CTR (do inglês, \"Click-Through Rate\") ou taxa de conversão. Utiliza-se para isto uma abordagem baseada em regressão logística integrada a técnicas de fatoração de matriz que preveem, através da obtenção de fatores latentes do problema, a probabilidade de conversão para um anúncio impresso em dado site. Além disto, testes considerando uma estratégia dinâmica (em função do tempo) são apresentados indicando que o desempenho previamente obtido pode melhorar ainda mais. De acordo com o conhecimento do autor, esta é a primeira vez que este procedimento é relatado na literatura. |
| id |
USP_28ffc54c5a0cba038c6d1daf6ee45a12 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-22052014-232901 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Desenvolvimento de preditores para recomendação automática de produtos.Development of predictors for automated products recommendation.Computational advertisingCTR predictorInteligência artificialMachine learningMatriz factorizationOnline advertisingPreditores (Desenvolvimento)ProdutosSVDCom o avanço da internet, novos tipos de negócios surgiram. Por exemplo, o sistema de anúncios online: produtores de sites e diversos outros conteúdos podem dedicar em uma parte qualquer de sua página um espaço para a impressão de anúncios de diversas lojas em troca de um valor oferecido pelo anunciante. É neste contexto que este trabalho se insere. O objetivo principal é o desenvolvimento de algoritmos que preveem a probabilidade que um dado usuário tem de se interessar e clicar em um anúncio a que está sendo exposto. Este problema é conhecido como predição de CTR (do inglês, \"Click-Through Rate\") ou taxa de conversão. Utiliza-se para isto uma abordagem baseada em regressão logística integrada a técnicas de fatoração de matriz que preveem, através da obtenção de fatores latentes do problema, a probabilidade de conversão para um anúncio impresso em dado site. Além disto, testes considerando uma estratégia dinâmica (em função do tempo) são apresentados indicando que o desempenho previamente obtido pode melhorar ainda mais. De acordo com o conhecimento do autor, esta é a primeira vez que este procedimento é relatado na literatura.With the popularization of the internet, new types of business are emerging. An example is the online marketing system: publishers can dedicate in any given space of theirs websites a place to the printing of banners from different stores in exchange for a fee paid by the advertiser. It\'s in this context that this work takes place. Its main goal will be the development of algorithms that forecasts the probability that a given user will get interested in the ad he or she is seeing and click it. This problem is also known as CTR Prediction Task. To do so, a logistic regression approach is used combined with matrix factorization techniques that predict, through latent factor models, the probability that the click will occur. On top of that, several tests are conducted utilizing a dynamic approach (varying in function of time) revealing that the performance can increase even higher. According to the authors knowledge, this is the first time this test is conducted on the literature of CTR prediction.Biblioteca Digitais de Teses e Dissertações da USPCozman, Fabio GagliardiFuks, Willian Jean2013-05-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/3/3152/tde-22052014-232901/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:49Zoai:teses.usp.br:tde-22052014-232901Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:49Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Desenvolvimento de preditores para recomendação automática de produtos. Development of predictors for automated products recommendation. |
| title |
Desenvolvimento de preditores para recomendação automática de produtos. |
| spellingShingle |
Desenvolvimento de preditores para recomendação automática de produtos. Fuks, Willian Jean Computational advertising CTR predictor Inteligência artificial Machine learning Matriz factorization Online advertising Preditores (Desenvolvimento) Produtos SVD |
| title_short |
Desenvolvimento de preditores para recomendação automática de produtos. |
| title_full |
Desenvolvimento de preditores para recomendação automática de produtos. |
| title_fullStr |
Desenvolvimento de preditores para recomendação automática de produtos. |
| title_full_unstemmed |
Desenvolvimento de preditores para recomendação automática de produtos. |
| title_sort |
Desenvolvimento de preditores para recomendação automática de produtos. |
| author |
Fuks, Willian Jean |
| author_facet |
Fuks, Willian Jean |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Cozman, Fabio Gagliardi |
| dc.contributor.author.fl_str_mv |
Fuks, Willian Jean |
| dc.subject.por.fl_str_mv |
Computational advertising CTR predictor Inteligência artificial Machine learning Matriz factorization Online advertising Preditores (Desenvolvimento) Produtos SVD |
| topic |
Computational advertising CTR predictor Inteligência artificial Machine learning Matriz factorization Online advertising Preditores (Desenvolvimento) Produtos SVD |
| description |
Com o avanço da internet, novos tipos de negócios surgiram. Por exemplo, o sistema de anúncios online: produtores de sites e diversos outros conteúdos podem dedicar em uma parte qualquer de sua página um espaço para a impressão de anúncios de diversas lojas em troca de um valor oferecido pelo anunciante. É neste contexto que este trabalho se insere. O objetivo principal é o desenvolvimento de algoritmos que preveem a probabilidade que um dado usuário tem de se interessar e clicar em um anúncio a que está sendo exposto. Este problema é conhecido como predição de CTR (do inglês, \"Click-Through Rate\") ou taxa de conversão. Utiliza-se para isto uma abordagem baseada em regressão logística integrada a técnicas de fatoração de matriz que preveem, através da obtenção de fatores latentes do problema, a probabilidade de conversão para um anúncio impresso em dado site. Além disto, testes considerando uma estratégia dinâmica (em função do tempo) são apresentados indicando que o desempenho previamente obtido pode melhorar ainda mais. De acordo com o conhecimento do autor, esta é a primeira vez que este procedimento é relatado na literatura. |
| publishDate |
2013 |
| dc.date.none.fl_str_mv |
2013-05-28 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/3/3152/tde-22052014-232901/ |
| url |
http://www.teses.usp.br/teses/disponiveis/3/3152/tde-22052014-232901/ |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1815258385412521984 |