Desenvolvimento de preditores para recomendação automática de produtos.

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Fuks, Willian Jean
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
SVD
Link de acesso: http://www.teses.usp.br/teses/disponiveis/3/3152/tde-22052014-232901/
Resumo: Com o avanço da internet, novos tipos de negócios surgiram. Por exemplo, o sistema de anúncios online: produtores de sites e diversos outros conteúdos podem dedicar em uma parte qualquer de sua página um espaço para a impressão de anúncios de diversas lojas em troca de um valor oferecido pelo anunciante. É neste contexto que este trabalho se insere. O objetivo principal é o desenvolvimento de algoritmos que preveem a probabilidade que um dado usuário tem de se interessar e clicar em um anúncio a que está sendo exposto. Este problema é conhecido como predição de CTR (do inglês, \"Click-Through Rate\") ou taxa de conversão. Utiliza-se para isto uma abordagem baseada em regressão logística integrada a técnicas de fatoração de matriz que preveem, através da obtenção de fatores latentes do problema, a probabilidade de conversão para um anúncio impresso em dado site. Além disto, testes considerando uma estratégia dinâmica (em função do tempo) são apresentados indicando que o desempenho previamente obtido pode melhorar ainda mais. De acordo com o conhecimento do autor, esta é a primeira vez que este procedimento é relatado na literatura.
id USP_28ffc54c5a0cba038c6d1daf6ee45a12
oai_identifier_str oai:teses.usp.br:tde-22052014-232901
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Desenvolvimento de preditores para recomendação automática de produtos.Development of predictors for automated products recommendation.Computational advertisingCTR predictorInteligência artificialMachine learningMatriz factorizationOnline advertisingPreditores (Desenvolvimento)ProdutosSVDCom o avanço da internet, novos tipos de negócios surgiram. Por exemplo, o sistema de anúncios online: produtores de sites e diversos outros conteúdos podem dedicar em uma parte qualquer de sua página um espaço para a impressão de anúncios de diversas lojas em troca de um valor oferecido pelo anunciante. É neste contexto que este trabalho se insere. O objetivo principal é o desenvolvimento de algoritmos que preveem a probabilidade que um dado usuário tem de se interessar e clicar em um anúncio a que está sendo exposto. Este problema é conhecido como predição de CTR (do inglês, \"Click-Through Rate\") ou taxa de conversão. Utiliza-se para isto uma abordagem baseada em regressão logística integrada a técnicas de fatoração de matriz que preveem, através da obtenção de fatores latentes do problema, a probabilidade de conversão para um anúncio impresso em dado site. Além disto, testes considerando uma estratégia dinâmica (em função do tempo) são apresentados indicando que o desempenho previamente obtido pode melhorar ainda mais. De acordo com o conhecimento do autor, esta é a primeira vez que este procedimento é relatado na literatura.With the popularization of the internet, new types of business are emerging. An example is the online marketing system: publishers can dedicate in any given space of theirs websites a place to the printing of banners from different stores in exchange for a fee paid by the advertiser. It\'s in this context that this work takes place. Its main goal will be the development of algorithms that forecasts the probability that a given user will get interested in the ad he or she is seeing and click it. This problem is also known as CTR Prediction Task. To do so, a logistic regression approach is used combined with matrix factorization techniques that predict, through latent factor models, the probability that the click will occur. On top of that, several tests are conducted utilizing a dynamic approach (varying in function of time) revealing that the performance can increase even higher. According to the authors knowledge, this is the first time this test is conducted on the literature of CTR prediction.Biblioteca Digitais de Teses e Dissertações da USPCozman, Fabio GagliardiFuks, Willian Jean2013-05-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/3/3152/tde-22052014-232901/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:49Zoai:teses.usp.br:tde-22052014-232901Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:49Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Desenvolvimento de preditores para recomendação automática de produtos.
Development of predictors for automated products recommendation.
title Desenvolvimento de preditores para recomendação automática de produtos.
spellingShingle Desenvolvimento de preditores para recomendação automática de produtos.
Fuks, Willian Jean
Computational advertising
CTR predictor
Inteligência artificial
Machine learning
Matriz factorization
Online advertising
Preditores (Desenvolvimento)
Produtos
SVD
title_short Desenvolvimento de preditores para recomendação automática de produtos.
title_full Desenvolvimento de preditores para recomendação automática de produtos.
title_fullStr Desenvolvimento de preditores para recomendação automática de produtos.
title_full_unstemmed Desenvolvimento de preditores para recomendação automática de produtos.
title_sort Desenvolvimento de preditores para recomendação automática de produtos.
author Fuks, Willian Jean
author_facet Fuks, Willian Jean
author_role author
dc.contributor.none.fl_str_mv Cozman, Fabio Gagliardi
dc.contributor.author.fl_str_mv Fuks, Willian Jean
dc.subject.por.fl_str_mv Computational advertising
CTR predictor
Inteligência artificial
Machine learning
Matriz factorization
Online advertising
Preditores (Desenvolvimento)
Produtos
SVD
topic Computational advertising
CTR predictor
Inteligência artificial
Machine learning
Matriz factorization
Online advertising
Preditores (Desenvolvimento)
Produtos
SVD
description Com o avanço da internet, novos tipos de negócios surgiram. Por exemplo, o sistema de anúncios online: produtores de sites e diversos outros conteúdos podem dedicar em uma parte qualquer de sua página um espaço para a impressão de anúncios de diversas lojas em troca de um valor oferecido pelo anunciante. É neste contexto que este trabalho se insere. O objetivo principal é o desenvolvimento de algoritmos que preveem a probabilidade que um dado usuário tem de se interessar e clicar em um anúncio a que está sendo exposto. Este problema é conhecido como predição de CTR (do inglês, \"Click-Through Rate\") ou taxa de conversão. Utiliza-se para isto uma abordagem baseada em regressão logística integrada a técnicas de fatoração de matriz que preveem, através da obtenção de fatores latentes do problema, a probabilidade de conversão para um anúncio impresso em dado site. Além disto, testes considerando uma estratégia dinâmica (em função do tempo) são apresentados indicando que o desempenho previamente obtido pode melhorar ainda mais. De acordo com o conhecimento do autor, esta é a primeira vez que este procedimento é relatado na literatura.
publishDate 2013
dc.date.none.fl_str_mv 2013-05-28
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/3/3152/tde-22052014-232901/
url http://www.teses.usp.br/teses/disponiveis/3/3152/tde-22052014-232901/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258385412521984