New perspectives for the Bayesian Conditional Transformation Models

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: Piccirilli, Giovanni Pastori
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/45/45133/tde-19052025-140159/
Resumo: Bayesian Conditional Transformation models (BCTMs) address the direct estimation of the conditional distribution function of a random variable conditional on a set of explanatory variables . These models infer the conditional distribution by applying a transformation function of given = , mapping it onto a baseline distribution free of parameters to be estimated. The benefit of these models is that the explanatory variables impact the entire conditional distribution of rather than only the first moments. The transformation functions are an essential part of the model and range from simple, low-parameterized functions to complex relationships involving nonlinear functions of the explanatory variables and re- sponse variables. In our approach, we explore the BCTM formulation that employs monotonic B-splines and Bernstein polynomials to parameterize the transformation function. Smoothness and regularization are ensured through appropriately chosen prior distributions for the parameters. We proposed two new estimation methods: one motivated by the Integrated Nested Laplace Approximation presented by Rue et al. (2009) and another using Variational Bayes presented by Niekerk and Rue (2024). Two simulation studies were conducted. One of them assesses the ability of our algorithm to recover the model coefficients, and the other evaluates its performance in estimating conditional densities compared to existing approaches. The applications were divided into two parts: (i) reanalysis of datasets previously studied using other methodologies and (ii) novel analyses of real-world data. In the first part, one of the studies compares our first proposed algorithm, named Integrated Laplace with Bayesian Conditional Transformation Models (ILBCTM), with the original MCMC-based algorithm for the BCTM (Carlan et al., 2023) on the same models. We obtained similar results with a smaller computational time. In the second part, we validate our methods through applications to real-world datasets, including a study on bronchial and lung cancer mortality in Brazil and an analysis of vehicle theft data in São Paulo city.
id USP_2c6b5b41ec2f64ed943788b4169633d2
oai_identifier_str oai:teses.usp.br:tde-19052025-140159
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling New perspectives for the Bayesian Conditional Transformation ModelsNovas perspectivas para os Modelos de Transformação Condicional BayesianosAproximação de LaplaceB-splinesB-splinesBayes variacionalBernstein polynomialsConditional distribution functionFunção de distribuição condicionalLaplace approximationPolinômios de BernsteinVariational BayesBayesian Conditional Transformation models (BCTMs) address the direct estimation of the conditional distribution function of a random variable conditional on a set of explanatory variables . These models infer the conditional distribution by applying a transformation function of given = , mapping it onto a baseline distribution free of parameters to be estimated. The benefit of these models is that the explanatory variables impact the entire conditional distribution of rather than only the first moments. The transformation functions are an essential part of the model and range from simple, low-parameterized functions to complex relationships involving nonlinear functions of the explanatory variables and re- sponse variables. In our approach, we explore the BCTM formulation that employs monotonic B-splines and Bernstein polynomials to parameterize the transformation function. Smoothness and regularization are ensured through appropriately chosen prior distributions for the parameters. We proposed two new estimation methods: one motivated by the Integrated Nested Laplace Approximation presented by Rue et al. (2009) and another using Variational Bayes presented by Niekerk and Rue (2024). Two simulation studies were conducted. One of them assesses the ability of our algorithm to recover the model coefficients, and the other evaluates its performance in estimating conditional densities compared to existing approaches. The applications were divided into two parts: (i) reanalysis of datasets previously studied using other methodologies and (ii) novel analyses of real-world data. In the first part, one of the studies compares our first proposed algorithm, named Integrated Laplace with Bayesian Conditional Transformation Models (ILBCTM), with the original MCMC-based algorithm for the BCTM (Carlan et al., 2023) on the same models. We obtained similar results with a smaller computational time. In the second part, we validate our methods through applications to real-world datasets, including a study on bronchial and lung cancer mortality in Brazil and an analysis of vehicle theft data in São Paulo city.Os Modelos de Transformação Condicional Bayesianos (BCTMs) permitem a estimativa direta da função de distribuição condicional de uma variável aleatória dado um conjunto de variáveis explicativas . Esses modelos inferem a distribuição condicional aplicando uma função de transformação a dado = , mapeando-o para uma distribuição de referência livre de parâmetros a serem estimados. A principal vantagem dos BCTMs é que as variáveis explicativas afetam toda a distribuição condicional de , em vez de impactar apenas seus momentos iniciais. As funções de transformação são componentes essenciais do modelo e podem variar desde funções simples e com poucos parâmetros até relações complexas que envolvem funções não lineares das variáveis explicativas e da variável resposta. Em nossa abordagem, exploramos uma formulação dos BCTMs que utiliza splines-B monotônicas e polinômios de Bernstein para parametrizar a função de transformação. A suavidade e a regularização são garantidas por meio da escolha adequada de distribuições a priori para os parâmetros. Propomos dois novos métodos de estimação: um baseado na Aproximação de Laplace Aninhada Integrada (INLA), apresentada por Rue et al. (2009), e outro baseado no Variational Bayes, conforme descrito por Niekerk e Rue (2024). Conduzimos dois estudos de simulação: um para avaliar a capacidade do algoritmo de recuperar os coeficientes do modelo e outro para verificar seu desempenho na estimação de densidades condicionais em comparação com abordagens existentes. As aplicações foram divididas em duas partes: (i) reanálises de conjuntos de dados previamente estudados com outras metodologias e (ii) novas análises de dados reais. Na primeira parte, um dos estudos compara nosso primeiro algoritmo proposto, denominado Integrated Laplace with Bayesian Conditional Transformation Models (ILBCTM), com o algoritmo original baseado em MCMC para os BCTMs (Carlan et al., 2023) nos mesmos modelos. Obtivemos resultados semelhantes, porém com menor tempo computacional. Na segunda parte, validamos nossos métodos por meio de aplicações a conjuntos de dados reais, incluindo um estudo sobre a mortalidade por câncer de pulmão e brônquios no Brasil e uma análise de furtos de veículos na cidade de São Paulo.Biblioteca Digitais de Teses e Dissertações da USPBranco, Marcia D EliaPiccirilli, Giovanni Pastori2025-03-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45133/tde-19052025-140159/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-05-20T16:38:02Zoai:teses.usp.br:tde-19052025-140159Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-05-20T16:38:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv New perspectives for the Bayesian Conditional Transformation Models
Novas perspectivas para os Modelos de Transformação Condicional Bayesianos
title New perspectives for the Bayesian Conditional Transformation Models
spellingShingle New perspectives for the Bayesian Conditional Transformation Models
Piccirilli, Giovanni Pastori
Aproximação de Laplace
B-splines
B-splines
Bayes variacional
Bernstein polynomials
Conditional distribution function
Função de distribuição condicional
Laplace approximation
Polinômios de Bernstein
Variational Bayes
title_short New perspectives for the Bayesian Conditional Transformation Models
title_full New perspectives for the Bayesian Conditional Transformation Models
title_fullStr New perspectives for the Bayesian Conditional Transformation Models
title_full_unstemmed New perspectives for the Bayesian Conditional Transformation Models
title_sort New perspectives for the Bayesian Conditional Transformation Models
author Piccirilli, Giovanni Pastori
author_facet Piccirilli, Giovanni Pastori
author_role author
dc.contributor.none.fl_str_mv Branco, Marcia D Elia
dc.contributor.author.fl_str_mv Piccirilli, Giovanni Pastori
dc.subject.por.fl_str_mv Aproximação de Laplace
B-splines
B-splines
Bayes variacional
Bernstein polynomials
Conditional distribution function
Função de distribuição condicional
Laplace approximation
Polinômios de Bernstein
Variational Bayes
topic Aproximação de Laplace
B-splines
B-splines
Bayes variacional
Bernstein polynomials
Conditional distribution function
Função de distribuição condicional
Laplace approximation
Polinômios de Bernstein
Variational Bayes
description Bayesian Conditional Transformation models (BCTMs) address the direct estimation of the conditional distribution function of a random variable conditional on a set of explanatory variables . These models infer the conditional distribution by applying a transformation function of given = , mapping it onto a baseline distribution free of parameters to be estimated. The benefit of these models is that the explanatory variables impact the entire conditional distribution of rather than only the first moments. The transformation functions are an essential part of the model and range from simple, low-parameterized functions to complex relationships involving nonlinear functions of the explanatory variables and re- sponse variables. In our approach, we explore the BCTM formulation that employs monotonic B-splines and Bernstein polynomials to parameterize the transformation function. Smoothness and regularization are ensured through appropriately chosen prior distributions for the parameters. We proposed two new estimation methods: one motivated by the Integrated Nested Laplace Approximation presented by Rue et al. (2009) and another using Variational Bayes presented by Niekerk and Rue (2024). Two simulation studies were conducted. One of them assesses the ability of our algorithm to recover the model coefficients, and the other evaluates its performance in estimating conditional densities compared to existing approaches. The applications were divided into two parts: (i) reanalysis of datasets previously studied using other methodologies and (ii) novel analyses of real-world data. In the first part, one of the studies compares our first proposed algorithm, named Integrated Laplace with Bayesian Conditional Transformation Models (ILBCTM), with the original MCMC-based algorithm for the BCTM (Carlan et al., 2023) on the same models. We obtained similar results with a smaller computational time. In the second part, we validate our methods through applications to real-world datasets, including a study on bronchial and lung cancer mortality in Brazil and an analysis of vehicle theft data in São Paulo city.
publishDate 2025
dc.date.none.fl_str_mv 2025-03-25
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/45/45133/tde-19052025-140159/
url https://www.teses.usp.br/teses/disponiveis/45/45133/tde-19052025-140159/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1844786338871640064