Kalman Filter and model reference adaptive system-based sensorless control of surface-mounted permanent magnet synchronous machine with non-sinusoidal back-electromotive force

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: Santos, Stefan Thiago Cury Alves dos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/18/18153/tde-07052025-155507/
Resumo: Given the relevance of sensorless control of surface-mounted permanent magnet synchronous machines (SPMSM) and the challenges of estimating their position and speed with non- sinusoidal back-electromotive force (back-EMF), this work aims to study sensorless methods for medium and high speeds and suggests alternatives to the existing techniques in the literature for this type of machine. Two new approaches are proposed: the first is based on the classic Kalman filter and infers the machines rotor position from the back-EMF estimation in the αβ reference frame; and the second, for rotor speed estimation, consists of a new adaptation law, calculated in the dqx reference frame, for reference model adaptive system (MRAS) estimation. Both proposed methods consider the non-sinusoidal characteristic of the back-EMF and are suitable for any SPMSM. The MRAS-based solution is also appropriate for interior permanent magnet synchronous machines. The vector control of the SPMSM is implemented in the dqx reference frame. The experimental results compared the proposed methods, briefly called KF (proposed) and MRAS dqx, with three others already presented in the literature: extended Kalman filter (called EKF) for direct position and speed estimation; classical Kalman filter for back-EMF estimation ignoring back-EMF dynamics (KF (e = 0)); and classical Kalman filter for back-EMF estimation ignoring back-EMF harmonic components other than the fundamental (KF (sinusoidal)). KF (e = 0), KF (sinusoidal), and KF (proposed) concurrently use the proposed MRAS-based method for speed estimation. The five approaches are compared considering transient (step commands for speed variation and reversal) and steady-state responses (speeds from 20 rad/s to 140 rad/s in steps of 20 rad/s, with and without load torque). The minimum operating speed at no load and the execution time for each method are also checked. All the techniques show similar performance about measured and estimated speed dynamics in transient tests, as well as similar minimum operating speeds. However, only EKF and MRAS dqx execute the reversal command and successfully keep the system stable below the minimum operating speed. As for the steady-state tests, KF (proposed) shows excellent position estimation in the speed range between 20 rad/s and 80 rad/s, which results in low torque ripples. MRAS dqx shows excellent results above 100 rad/s, with the lowest position estimation errors and torque ripple. In terms of computational burden, MRAS dqx has the lowest execution time, and KF (proposed) comes in third, with a time just longer than KF (e = 0). Therefore, the experimental results demonstrate the effectiveness and usefulness of the proposed methods in the sensorless control of SPMSM with non-sinusoidal back-EMF, as well as advantages over other existing and consolidated techniques in the literature.
id USP_2e0d2449f65ab563d183615eb600aab3
oai_identifier_str oai:teses.usp.br:tde-07052025-155507
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Kalman Filter and model reference adaptive system-based sensorless control of surface-mounted permanent magnet synchronous machine with non-sinusoidal back-electromotive forceControle sem sensores de posição baseado em Filtro de Kalman e sistema adaptativo com modelo de referência para máquinas síncronas com ímã permanente na superfície do rotor e força contraeletromotriz não-senoidalcontrole sem sensores de posiçãoFiltro de Kalmanforça contraeletromotriz não- senoidalKalman Filtermáquina síncrona com ímã permanentemodel reference adaptive systemnon-sinusoidal back-electromotive forcepermanent magnet synchronous machinesensorless controlsistema adaptativo por modelo de referênciaGiven the relevance of sensorless control of surface-mounted permanent magnet synchronous machines (SPMSM) and the challenges of estimating their position and speed with non- sinusoidal back-electromotive force (back-EMF), this work aims to study sensorless methods for medium and high speeds and suggests alternatives to the existing techniques in the literature for this type of machine. Two new approaches are proposed: the first is based on the classic Kalman filter and infers the machines rotor position from the back-EMF estimation in the αβ reference frame; and the second, for rotor speed estimation, consists of a new adaptation law, calculated in the dqx reference frame, for reference model adaptive system (MRAS) estimation. Both proposed methods consider the non-sinusoidal characteristic of the back-EMF and are suitable for any SPMSM. The MRAS-based solution is also appropriate for interior permanent magnet synchronous machines. The vector control of the SPMSM is implemented in the dqx reference frame. The experimental results compared the proposed methods, briefly called KF (proposed) and MRAS dqx, with three others already presented in the literature: extended Kalman filter (called EKF) for direct position and speed estimation; classical Kalman filter for back-EMF estimation ignoring back-EMF dynamics (KF (e = 0)); and classical Kalman filter for back-EMF estimation ignoring back-EMF harmonic components other than the fundamental (KF (sinusoidal)). KF (e = 0), KF (sinusoidal), and KF (proposed) concurrently use the proposed MRAS-based method for speed estimation. The five approaches are compared considering transient (step commands for speed variation and reversal) and steady-state responses (speeds from 20 rad/s to 140 rad/s in steps of 20 rad/s, with and without load torque). The minimum operating speed at no load and the execution time for each method are also checked. All the techniques show similar performance about measured and estimated speed dynamics in transient tests, as well as similar minimum operating speeds. However, only EKF and MRAS dqx execute the reversal command and successfully keep the system stable below the minimum operating speed. As for the steady-state tests, KF (proposed) shows excellent position estimation in the speed range between 20 rad/s and 80 rad/s, which results in low torque ripples. MRAS dqx shows excellent results above 100 rad/s, with the lowest position estimation errors and torque ripple. In terms of computational burden, MRAS dqx has the lowest execution time, and KF (proposed) comes in third, with a time just longer than KF (e = 0). Therefore, the experimental results demonstrate the effectiveness and usefulness of the proposed methods in the sensorless control of SPMSM with non-sinusoidal back-EMF, as well as advantages over other existing and consolidated techniques in the literature.Dada a relevância do controle sem sensores de posição e velocidade (em inglês, sensorless) de máquinas síncronas com ímã permanente (MSIP) na superfície do rotor (MSIPS) e os desafios envolvidos na estimação de posição e velocidade da MSIPS com força contraeletromotriz (FCEM) não-senoidal, este trabalho se propõe a estudar métodos sensorless para médias e altas velocidades e a sugerir alternativas às técnicas existentes na literatura para este tipo de máquina. Duas novas abordagens são propostas: a primeira é baseada no filtro de Kalman clássico e infere a posição do rotor da máquina a partir da estimação da FCEM em referencial αβ e a segunda, para estimação da velocidade do rotor, consiste em uma nova lei de adaptação, calculada no referencial dqx, para estimação com sistema adaptativo por modelo de referência (em inglês, model reference adaptive system - MRAS). Ambos os métodos propostos levam em consideração a característica não-senoidal da FCEM e são apropriados para qualquer MSIPS. A solução baseada em MRAS também é adequada para a MSIP com ímã no interior do rotor. O controle vetorial da MSIPS é implementado no referencial dqx. Os resultados obtidos experimentalmente compararam os métodos propostos, denominados resumidamente KF (proposto) e MRAS dqx, com outros três já consolidados na literatura: filtro de Kalman estendido para estimação direta de posição e velocidade (denominado EKF); filtro de Kalman clássico para estimação de FCEM ignorando a dinâmica da FCEM (KF (e = 0)); e filtro de Kalman clássico para estimação de FCEM ignorando os componentes harmônicos da FCEM além do fundamental (KF (senoidal)). KF (e = 0), KF (senoidal) e KF (proposto) usam concomitantemente o método proposto baseado em MRAS para estimação de velocidade. As cinco abordagens são comparadas entre si com respostas em regime transitório (comandos em degrau para variação de velocidade e reversão) e permanente (velocidades de 20 rad/s a 140 rad/s em passos de 20 rad/s, com e sem torque de carga). São verificados também a velocidade mínima de operação sem carga e o tempo de execução de cada método. Todas as técnicas mostram desempenho semelhante em relação à dinâmica de velocidade medida e estimada em testes transitórios, bem como velocidades mínimas de operação semelhantes, ainda que apenas EKF e MRAS dqx tenham se mostrado capazes de realizar a reversão da máquina e de manter o sistema estável abaixo da velocidade mínima de operação. Quanto aos testes em regime permanente, KF (proposto) mostra ótima estimação de posição na faixa de velocidades entre 20 rad/s e 80 rad/s, o que resulta em baixas ondulações de torque. Já MRAS dqx apresenta excelentes resultados acima de 100 rad/s, com os menores erros de estimação de posição e ondulações de torque. Quanto ao custo computacional, MRAS dqx tem o menor tempo de execução e KF (proposto) fica em terceiro, com tempo pouco maior que KF (e = 0). Portanto, os resultados experimentais demonstram a efetividade e a utilidade dos métodos propostos no controle sensorless da MSIPS com FCEM não-senoidal, bem como vantagens sobre outras técnicas já existentes e consolidadas na literatura.Biblioteca Digitais de Teses e Dissertações da USPMonteiro, José Roberto Boffino de AlmeidaSantos, Stefan Thiago Cury Alves dos2025-03-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/18/18153/tde-07052025-155507/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-05-09T13:28:02Zoai:teses.usp.br:tde-07052025-155507Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-05-09T13:28:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Kalman Filter and model reference adaptive system-based sensorless control of surface-mounted permanent magnet synchronous machine with non-sinusoidal back-electromotive force
Controle sem sensores de posição baseado em Filtro de Kalman e sistema adaptativo com modelo de referência para máquinas síncronas com ímã permanente na superfície do rotor e força contraeletromotriz não-senoidal
title Kalman Filter and model reference adaptive system-based sensorless control of surface-mounted permanent magnet synchronous machine with non-sinusoidal back-electromotive force
spellingShingle Kalman Filter and model reference adaptive system-based sensorless control of surface-mounted permanent magnet synchronous machine with non-sinusoidal back-electromotive force
Santos, Stefan Thiago Cury Alves dos
controle sem sensores de posição
Filtro de Kalman
força contraeletromotriz não- senoidal
Kalman Filter
máquina síncrona com ímã permanente
model reference adaptive system
non-sinusoidal back-electromotive force
permanent magnet synchronous machine
sensorless control
sistema adaptativo por modelo de referência
title_short Kalman Filter and model reference adaptive system-based sensorless control of surface-mounted permanent magnet synchronous machine with non-sinusoidal back-electromotive force
title_full Kalman Filter and model reference adaptive system-based sensorless control of surface-mounted permanent magnet synchronous machine with non-sinusoidal back-electromotive force
title_fullStr Kalman Filter and model reference adaptive system-based sensorless control of surface-mounted permanent magnet synchronous machine with non-sinusoidal back-electromotive force
title_full_unstemmed Kalman Filter and model reference adaptive system-based sensorless control of surface-mounted permanent magnet synchronous machine with non-sinusoidal back-electromotive force
title_sort Kalman Filter and model reference adaptive system-based sensorless control of surface-mounted permanent magnet synchronous machine with non-sinusoidal back-electromotive force
author Santos, Stefan Thiago Cury Alves dos
author_facet Santos, Stefan Thiago Cury Alves dos
author_role author
dc.contributor.none.fl_str_mv Monteiro, José Roberto Boffino de Almeida
dc.contributor.author.fl_str_mv Santos, Stefan Thiago Cury Alves dos
dc.subject.por.fl_str_mv controle sem sensores de posição
Filtro de Kalman
força contraeletromotriz não- senoidal
Kalman Filter
máquina síncrona com ímã permanente
model reference adaptive system
non-sinusoidal back-electromotive force
permanent magnet synchronous machine
sensorless control
sistema adaptativo por modelo de referência
topic controle sem sensores de posição
Filtro de Kalman
força contraeletromotriz não- senoidal
Kalman Filter
máquina síncrona com ímã permanente
model reference adaptive system
non-sinusoidal back-electromotive force
permanent magnet synchronous machine
sensorless control
sistema adaptativo por modelo de referência
description Given the relevance of sensorless control of surface-mounted permanent magnet synchronous machines (SPMSM) and the challenges of estimating their position and speed with non- sinusoidal back-electromotive force (back-EMF), this work aims to study sensorless methods for medium and high speeds and suggests alternatives to the existing techniques in the literature for this type of machine. Two new approaches are proposed: the first is based on the classic Kalman filter and infers the machines rotor position from the back-EMF estimation in the αβ reference frame; and the second, for rotor speed estimation, consists of a new adaptation law, calculated in the dqx reference frame, for reference model adaptive system (MRAS) estimation. Both proposed methods consider the non-sinusoidal characteristic of the back-EMF and are suitable for any SPMSM. The MRAS-based solution is also appropriate for interior permanent magnet synchronous machines. The vector control of the SPMSM is implemented in the dqx reference frame. The experimental results compared the proposed methods, briefly called KF (proposed) and MRAS dqx, with three others already presented in the literature: extended Kalman filter (called EKF) for direct position and speed estimation; classical Kalman filter for back-EMF estimation ignoring back-EMF dynamics (KF (e = 0)); and classical Kalman filter for back-EMF estimation ignoring back-EMF harmonic components other than the fundamental (KF (sinusoidal)). KF (e = 0), KF (sinusoidal), and KF (proposed) concurrently use the proposed MRAS-based method for speed estimation. The five approaches are compared considering transient (step commands for speed variation and reversal) and steady-state responses (speeds from 20 rad/s to 140 rad/s in steps of 20 rad/s, with and without load torque). The minimum operating speed at no load and the execution time for each method are also checked. All the techniques show similar performance about measured and estimated speed dynamics in transient tests, as well as similar minimum operating speeds. However, only EKF and MRAS dqx execute the reversal command and successfully keep the system stable below the minimum operating speed. As for the steady-state tests, KF (proposed) shows excellent position estimation in the speed range between 20 rad/s and 80 rad/s, which results in low torque ripples. MRAS dqx shows excellent results above 100 rad/s, with the lowest position estimation errors and torque ripple. In terms of computational burden, MRAS dqx has the lowest execution time, and KF (proposed) comes in third, with a time just longer than KF (e = 0). Therefore, the experimental results demonstrate the effectiveness and usefulness of the proposed methods in the sensorless control of SPMSM with non-sinusoidal back-EMF, as well as advantages over other existing and consolidated techniques in the literature.
publishDate 2025
dc.date.none.fl_str_mv 2025-03-27
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/18/18153/tde-07052025-155507/
url https://www.teses.usp.br/teses/disponiveis/18/18153/tde-07052025-155507/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1844786329593839616