Redes neurais artificiais como procedimento para retroanálise de pavimentos flexíveis

Detalhes bibliográficos
Ano de defesa: 2000
Autor(a) principal: Coutinho Neto, Benedito
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/18/18137/tde-01022018-122501/
Resumo: Este trabalho investiga um procedimento para retroanálise utilizando Redes Neurais Artificiais (RNAs). Nesta pesquisa foram utilizadas 35.472 bacias de deflexões hipotéticas, criadas pelo programa ELSYM5. A base de dados de treinamento das RNAs consistiu dessas bacias de deflexão e dos módulos e espessuras que as geraram. A camada de entrada das RNAs foi compostas da(s) espessura(s) da(s) camada(s) do pavimento, da bacia de deflexão (na simulação com a viga Benkelman, além desses parâmetros, incluiu-se o raio de curvatura (R)) e a camada de saída foi composta pelos módulos resilientes das camadas do pavimento. Esses dados serviram de entrada para o processo de aprendizagem, utilizando-se o simulador EasyNN 3.2, que se baseia em redes Multilayer Perceptron e no algoritmo de treinamento Backpropagation. Para o procedimento de retroanálise proposto foram implementadas seis RNAs: duas simulando o procedimento para pavimento de duas camadas (uma simulando o ensaio da viga Benkelman e a outra a do Falling Weight Deflectometer), duas para pavimento de três camadas (simulação com os mesmos aparelhos) e duas para pavimento de quatro camadas (simulando os ensaios descritos anteriormente). Mediante as regressões lineares entre os módulos reais (ELSYM5) e os previstos pela RNA, obtiveram-se coeficientes de determinação (R2) e erros médios relativos (EMR). Estes parâmetros demonstraram uma boa correlação linear entre os módulos reais (ELSYM5) e os previstos (RNA). Com os resultados obtidos, conclui-se que as RNAs são ferramentas potentes para serem utilizadas como procedimento de retroanálise para pavimentos flexíveis de duas, três e quatro camadas.
id USP_3073d3164f4ed46af95af84cfefffac7
oai_identifier_str oai:teses.usp.br:tde-01022018-122501
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Redes neurais artificiais como procedimento para retroanálise de pavimentos flexíveisArtificial neural networks as a backcalculation procedure flexible pavementsAnálise de pavimentoAparelhos deflectométricosArtificial neural networksBackcalculation of flexible pavementsBackcalculation procedureDeflectometrical equipmentsPavement analysisProcedimentos de retroanáliseRedes neurais artificiaisRetroanálise de pavimentos flexíveisEste trabalho investiga um procedimento para retroanálise utilizando Redes Neurais Artificiais (RNAs). Nesta pesquisa foram utilizadas 35.472 bacias de deflexões hipotéticas, criadas pelo programa ELSYM5. A base de dados de treinamento das RNAs consistiu dessas bacias de deflexão e dos módulos e espessuras que as geraram. A camada de entrada das RNAs foi compostas da(s) espessura(s) da(s) camada(s) do pavimento, da bacia de deflexão (na simulação com a viga Benkelman, além desses parâmetros, incluiu-se o raio de curvatura (R)) e a camada de saída foi composta pelos módulos resilientes das camadas do pavimento. Esses dados serviram de entrada para o processo de aprendizagem, utilizando-se o simulador EasyNN 3.2, que se baseia em redes Multilayer Perceptron e no algoritmo de treinamento Backpropagation. Para o procedimento de retroanálise proposto foram implementadas seis RNAs: duas simulando o procedimento para pavimento de duas camadas (uma simulando o ensaio da viga Benkelman e a outra a do Falling Weight Deflectometer), duas para pavimento de três camadas (simulação com os mesmos aparelhos) e duas para pavimento de quatro camadas (simulando os ensaios descritos anteriormente). Mediante as regressões lineares entre os módulos reais (ELSYM5) e os previstos pela RNA, obtiveram-se coeficientes de determinação (R2) e erros médios relativos (EMR). Estes parâmetros demonstraram uma boa correlação linear entre os módulos reais (ELSYM5) e os previstos (RNA). Com os resultados obtidos, conclui-se que as RNAs são ferramentas potentes para serem utilizadas como procedimento de retroanálise para pavimentos flexíveis de duas, três e quatro camadas.This paper investigates a backcalculation procedure using Artificial Neural Networks (ANNs). In the research 35,472 hypothetical deflection basins were used, created by the program ELSYM5. The ANNs training database consisted of these basins, and of the moduli and thickness used to generate them. The input layer of these ANNs was composed by thickness(es) of the pavement layer(s), the deflection basin (in the simulation with the Benkelman beam, beyond of those parameters, the curvature radius included (R)) and the output layer was composed by the resilient moduli of the layers of the pavement. Those data were used as output for the learning process, using the easyNN 3.2 simulator, which is based on Multilayer Perceptron and in the training algorithm Backpropagation. For the backcalculation procedure proposed six ANNs they were implemented: two simulating the procedure for pavement of two layers (a simulating the testing of the Benkelman beam and the other the one of Falling Weight Deflectometer), two for pavement of three layers (simulation with the same equipments) and two for pavement of for layers (simulating the testing described previously). The values founds throught linear regression between the real moduli (ELSYM5) and the predicted of ones for ANN, were obtained determination coefficients (R2) and relative average errors (EMR). These parameters demonstrated a good linear correlation between the real moduli (ELSYM5) and the predicted of ones (ANN). The conclusion .is that ANNs are potent tools for they be used in backcalculation procedures flexible pavements of two, three and four layers.Biblioteca Digitais de Teses e Dissertações da USPFabbri, Glauco Tulio PessaCoutinho Neto, Benedito2000-04-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/18/18137/tde-01022018-122501/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-07-19T20:50:39Zoai:teses.usp.br:tde-01022018-122501Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-19T20:50:39Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Redes neurais artificiais como procedimento para retroanálise de pavimentos flexíveis
Artificial neural networks as a backcalculation procedure flexible pavements
title Redes neurais artificiais como procedimento para retroanálise de pavimentos flexíveis
spellingShingle Redes neurais artificiais como procedimento para retroanálise de pavimentos flexíveis
Coutinho Neto, Benedito
Análise de pavimento
Aparelhos deflectométricos
Artificial neural networks
Backcalculation of flexible pavements
Backcalculation procedure
Deflectometrical equipments
Pavement analysis
Procedimentos de retroanálise
Redes neurais artificiais
Retroanálise de pavimentos flexíveis
title_short Redes neurais artificiais como procedimento para retroanálise de pavimentos flexíveis
title_full Redes neurais artificiais como procedimento para retroanálise de pavimentos flexíveis
title_fullStr Redes neurais artificiais como procedimento para retroanálise de pavimentos flexíveis
title_full_unstemmed Redes neurais artificiais como procedimento para retroanálise de pavimentos flexíveis
title_sort Redes neurais artificiais como procedimento para retroanálise de pavimentos flexíveis
author Coutinho Neto, Benedito
author_facet Coutinho Neto, Benedito
author_role author
dc.contributor.none.fl_str_mv Fabbri, Glauco Tulio Pessa
dc.contributor.author.fl_str_mv Coutinho Neto, Benedito
dc.subject.por.fl_str_mv Análise de pavimento
Aparelhos deflectométricos
Artificial neural networks
Backcalculation of flexible pavements
Backcalculation procedure
Deflectometrical equipments
Pavement analysis
Procedimentos de retroanálise
Redes neurais artificiais
Retroanálise de pavimentos flexíveis
topic Análise de pavimento
Aparelhos deflectométricos
Artificial neural networks
Backcalculation of flexible pavements
Backcalculation procedure
Deflectometrical equipments
Pavement analysis
Procedimentos de retroanálise
Redes neurais artificiais
Retroanálise de pavimentos flexíveis
description Este trabalho investiga um procedimento para retroanálise utilizando Redes Neurais Artificiais (RNAs). Nesta pesquisa foram utilizadas 35.472 bacias de deflexões hipotéticas, criadas pelo programa ELSYM5. A base de dados de treinamento das RNAs consistiu dessas bacias de deflexão e dos módulos e espessuras que as geraram. A camada de entrada das RNAs foi compostas da(s) espessura(s) da(s) camada(s) do pavimento, da bacia de deflexão (na simulação com a viga Benkelman, além desses parâmetros, incluiu-se o raio de curvatura (R)) e a camada de saída foi composta pelos módulos resilientes das camadas do pavimento. Esses dados serviram de entrada para o processo de aprendizagem, utilizando-se o simulador EasyNN 3.2, que se baseia em redes Multilayer Perceptron e no algoritmo de treinamento Backpropagation. Para o procedimento de retroanálise proposto foram implementadas seis RNAs: duas simulando o procedimento para pavimento de duas camadas (uma simulando o ensaio da viga Benkelman e a outra a do Falling Weight Deflectometer), duas para pavimento de três camadas (simulação com os mesmos aparelhos) e duas para pavimento de quatro camadas (simulando os ensaios descritos anteriormente). Mediante as regressões lineares entre os módulos reais (ELSYM5) e os previstos pela RNA, obtiveram-se coeficientes de determinação (R2) e erros médios relativos (EMR). Estes parâmetros demonstraram uma boa correlação linear entre os módulos reais (ELSYM5) e os previstos (RNA). Com os resultados obtidos, conclui-se que as RNAs são ferramentas potentes para serem utilizadas como procedimento de retroanálise para pavimentos flexíveis de duas, três e quatro camadas.
publishDate 2000
dc.date.none.fl_str_mv 2000-04-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/18/18137/tde-01022018-122501/
url http://www.teses.usp.br/teses/disponiveis/18/18137/tde-01022018-122501/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257778186354688