Force control benchmarking of hydraulic and electrical actuation systems applied to robotics

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Vergamini, Elisa Gamper
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/18/18162/tde-11062024-113219/
Resumo: Designers have faced difficulties when it comes to the interaction between robots and humans in dynamic environments. Managing the events in such scenarios involves controlling the force and velocity of the robots. There are two approaches to achieve this: controlling only the force or indirectly controlling the relationship between force and velocity through impedance. In addition to these factors, researchers have also investigated controllers for collaborative robots, legged robots and exoskeletons. This has posed a challenge for designers in determining the appropriate drive system to use. To address this issue, it is beneficial to provide a comprehensive comparison of controller-actuator combinations, which can serve as a guide for selecting the most suitable elements based on the specific application. Hence, the objective of this master\'s project is to systematically compare the stability and performance of force controllers in electric and hydraulic actuators. In order to achieve this goal, an experimental setup was designed, constructed and validated, along with the development of a benchmarking methodology that includes a range of metrics to assess performance, passivity, and stability. The methodology is applicable to all types of actuators and force controllers. Its approach enables the calculation of metrics regardless of loads or environments. It was implemented on three distinct actuation systems: a DC motor, a linear electric motor (PMLSM), and a hydraulic actuator (servo valve and cylinder). Various controllers, including different variations of PIDs, load velocity compensation, and disturbance observers (DOB), were tested for each actuator. The metrics obtained from the tests provided insights into the influence of different control architectures on the performance and stability of the actuators. For instance, it was observed that the derivative gain negatively affected the linear electric motor, while load velocity compensations showed more enhancements for hydraulic actuators. Moreover, linear controllers like PID exhibited poorer performance in systems with higher levels of non-linearities, such as hydraulic systems. There are both advantages and disadvantages to using the systems identified in the methodology. On the positive side, these transfer functions allow for the inclusion of metrics that can provide a more comprehensive evaluation of the system stability. However, it is important to note that these metrics can be influenced by external variables such as friction and uncertainties in the experimental data used on the identification process. Additionally, the use of this method enabled faster calculation of metrics and the capture of the most important information regarding force control in the studied cases.
id USP_34926bacb44f0d0e8cd702b689b2e4c1
oai_identifier_str oai:teses.usp.br:tde-11062024-113219
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Force control benchmarking of hydraulic and electrical actuation systems applied to roboticsComparação de controle de força de sistemas de atuação hidráulicos e elétricos aplicados à robóticabenchmarkingatuadores elétricos e hidráulicosbenchmarkingcontrole de forçaelectric and hydraulic actuatorsforce controlinteração físicaphysical interactionDesigners have faced difficulties when it comes to the interaction between robots and humans in dynamic environments. Managing the events in such scenarios involves controlling the force and velocity of the robots. There are two approaches to achieve this: controlling only the force or indirectly controlling the relationship between force and velocity through impedance. In addition to these factors, researchers have also investigated controllers for collaborative robots, legged robots and exoskeletons. This has posed a challenge for designers in determining the appropriate drive system to use. To address this issue, it is beneficial to provide a comprehensive comparison of controller-actuator combinations, which can serve as a guide for selecting the most suitable elements based on the specific application. Hence, the objective of this master\'s project is to systematically compare the stability and performance of force controllers in electric and hydraulic actuators. In order to achieve this goal, an experimental setup was designed, constructed and validated, along with the development of a benchmarking methodology that includes a range of metrics to assess performance, passivity, and stability. The methodology is applicable to all types of actuators and force controllers. Its approach enables the calculation of metrics regardless of loads or environments. It was implemented on three distinct actuation systems: a DC motor, a linear electric motor (PMLSM), and a hydraulic actuator (servo valve and cylinder). Various controllers, including different variations of PIDs, load velocity compensation, and disturbance observers (DOB), were tested for each actuator. The metrics obtained from the tests provided insights into the influence of different control architectures on the performance and stability of the actuators. For instance, it was observed that the derivative gain negatively affected the linear electric motor, while load velocity compensations showed more enhancements for hydraulic actuators. Moreover, linear controllers like PID exhibited poorer performance in systems with higher levels of non-linearities, such as hydraulic systems. There are both advantages and disadvantages to using the systems identified in the methodology. On the positive side, these transfer functions allow for the inclusion of metrics that can provide a more comprehensive evaluation of the system stability. However, it is important to note that these metrics can be influenced by external variables such as friction and uncertainties in the experimental data used on the identification process. Additionally, the use of this method enabled faster calculation of metrics and the capture of the most important information regarding force control in the studied cases.A interação entre robôs e humanos em ambientes dinâmicos tem sido desafiadora para os projetistas. O controle desses eventos é feito a partir do controle da grandezas envolvidas, força e velocidade. Para tal, pode-se escolher controlar apenas a força ou, de maneira indireta, controlar a relação entre as duas variáveis a partir da impedância. Junto a esses aspectos, controladores vêm sendo estudados para robôs colaborativos, robôs com pernas e exoesqueletos, fazendo com que projetistas tenham dificuldade quanto a qual sistema de acionamento utilizar. Neste contexto, é conveniente oferecer uma comparação sistemática dos conjuntos controladores-atuadores, de modo a disponibilizar um guia que permita adequar a seleção desses elementos conforme a aplicação. Assim, o presente projeto de mestrado tem como objetivo realizar uma comparação sistemática em estabilidade e desempenho de controladores de força em atuadores elétricos e hidráulicos. Para atingir este objetivo, foi criada, construída e validada uma bancada experimental, junto com o desenvolvimento de uma metodologia de benchmarking que inclui uma série de métricas para avaliar desempenho, passividade e estabilidade dos sistemas desejados. A metodologia é aplicável a todos os tipos de atuadores e controladores. Sua abordagem permite o cálculo de métricas independente de cargas/ambientes. Ela foi implementada em três sistemas de atuação distintos: um motor DC, um motor elétrico linear (PMLSM) e um atuador hidráulico (servoválvula e cilindro). Vários controladores, incluindo diferentes variações de PIDs, compensação de velocidade de carga e observadores de distúrbios (DOB), foram testados para cada atuador. As métricas obtidas nos testes forneceram percepções sobre a influência de diferentes arquiteturas de controle no desempenho e estabilidade dos atuadores. Por exemplo, observou-se que o ganho derivativo afetou negativamente o motor elétrico linear, enquanto as compensações de velocidade de carga apresentaram mais melhorias para atuadores hidráulicos. Além disso, controladores lineares como o PID apresentaram desempenho inferior em sistemas com níveis mais elevados de não linearidades, como sistemas hidráulicos. Existem vantagens e desvantagens na utilização dos sistemas identificados na metodologia. Do lado positivo, estas funções de transferência permitem a inclusão de métricas que podem fornecer uma avaliação mais abrangente da estabilidade do sistema. Porém, é importante notar que essas métricas podem ser influenciadas por variáveis externas como atrito e incertezas nos dados experimentais usados nas identificações. Além disso, a utilização deste método possibilitou o cálculo mais rápido das métricas e a captura de informações importantes sobre o controle de força nos casos estudados.Biblioteca Digitais de Teses e Dissertações da USPCunha, Thiago BoaventuraMagalhães, Daniel VarelaVergamini, Elisa Gamper2024-02-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/18/18162/tde-11062024-113219/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-06-14T20:53:02Zoai:teses.usp.br:tde-11062024-113219Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-06-14T20:53:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Force control benchmarking of hydraulic and electrical actuation systems applied to robotics
Comparação de controle de força de sistemas de atuação hidráulicos e elétricos aplicados à robótica
title Force control benchmarking of hydraulic and electrical actuation systems applied to robotics
spellingShingle Force control benchmarking of hydraulic and electrical actuation systems applied to robotics
Vergamini, Elisa Gamper
benchmarking
atuadores elétricos e hidráulicos
benchmarking
controle de força
electric and hydraulic actuators
force control
interação física
physical interaction
title_short Force control benchmarking of hydraulic and electrical actuation systems applied to robotics
title_full Force control benchmarking of hydraulic and electrical actuation systems applied to robotics
title_fullStr Force control benchmarking of hydraulic and electrical actuation systems applied to robotics
title_full_unstemmed Force control benchmarking of hydraulic and electrical actuation systems applied to robotics
title_sort Force control benchmarking of hydraulic and electrical actuation systems applied to robotics
author Vergamini, Elisa Gamper
author_facet Vergamini, Elisa Gamper
author_role author
dc.contributor.none.fl_str_mv Cunha, Thiago Boaventura
Magalhães, Daniel Varela
dc.contributor.author.fl_str_mv Vergamini, Elisa Gamper
dc.subject.por.fl_str_mv benchmarking
atuadores elétricos e hidráulicos
benchmarking
controle de força
electric and hydraulic actuators
force control
interação física
physical interaction
topic benchmarking
atuadores elétricos e hidráulicos
benchmarking
controle de força
electric and hydraulic actuators
force control
interação física
physical interaction
description Designers have faced difficulties when it comes to the interaction between robots and humans in dynamic environments. Managing the events in such scenarios involves controlling the force and velocity of the robots. There are two approaches to achieve this: controlling only the force or indirectly controlling the relationship between force and velocity through impedance. In addition to these factors, researchers have also investigated controllers for collaborative robots, legged robots and exoskeletons. This has posed a challenge for designers in determining the appropriate drive system to use. To address this issue, it is beneficial to provide a comprehensive comparison of controller-actuator combinations, which can serve as a guide for selecting the most suitable elements based on the specific application. Hence, the objective of this master\'s project is to systematically compare the stability and performance of force controllers in electric and hydraulic actuators. In order to achieve this goal, an experimental setup was designed, constructed and validated, along with the development of a benchmarking methodology that includes a range of metrics to assess performance, passivity, and stability. The methodology is applicable to all types of actuators and force controllers. Its approach enables the calculation of metrics regardless of loads or environments. It was implemented on three distinct actuation systems: a DC motor, a linear electric motor (PMLSM), and a hydraulic actuator (servo valve and cylinder). Various controllers, including different variations of PIDs, load velocity compensation, and disturbance observers (DOB), were tested for each actuator. The metrics obtained from the tests provided insights into the influence of different control architectures on the performance and stability of the actuators. For instance, it was observed that the derivative gain negatively affected the linear electric motor, while load velocity compensations showed more enhancements for hydraulic actuators. Moreover, linear controllers like PID exhibited poorer performance in systems with higher levels of non-linearities, such as hydraulic systems. There are both advantages and disadvantages to using the systems identified in the methodology. On the positive side, these transfer functions allow for the inclusion of metrics that can provide a more comprehensive evaluation of the system stability. However, it is important to note that these metrics can be influenced by external variables such as friction and uncertainties in the experimental data used on the identification process. Additionally, the use of this method enabled faster calculation of metrics and the capture of the most important information regarding force control in the studied cases.
publishDate 2024
dc.date.none.fl_str_mv 2024-02-22
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/18/18162/tde-11062024-113219/
url https://www.teses.usp.br/teses/disponiveis/18/18162/tde-11062024-113219/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258032743907328