Identificação de plantas invasoras em tempo real.

Detalhes bibliográficos
Ano de defesa: 2002
Autor(a) principal: Pernomian, Viviane Araujo
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-12022003-123905/
Resumo: A identificação de plantas invasoras é de extrema importância em diversos procedimentos utilizados na agricultura. Apesar de ser uma tarefa computacionalmente difícil, esta identificação tem se tornado muito importante no contexto da agricultura de precisão. A agricultura de precisão substitui os tratos culturais de grandes áreas da cultura, feitos pela média do nível dos problemas encontrados nessas áreas, por tratamento específicos e pontuais. As pricipais vantagens são o aumento de produtividade, relacionado com a diminuição da variabilidade na produção, a economia de insumos e a preservação do meio ambiente. Este trabalho enfoca o reconhecimento de plantas invasoras em tempo real. Para manter o requisito de tempo real, são utilizadas redes neurais artificiais como meio para o reconhecimento de padrões. Entre as diversas plantas invasoras de ocorrência freqüente no cerrado brasileiro, foi selecionado o picão preto para a avaliação das técnicas adotadas. Uma arquitetura modular de reconhecimento é proposta, com o uso de processamento paralelo, facilitando a inclusão de módulos de reconhecimento de outras plantas invasoras sem a deterioração do desempenho do sistema. Os resultados obtidos são amplamente satisfatórios, demonstrando a possibilidade do desenvolvimento de um sistema embarcado completo de identificação de plantas invasoras em tempo real. Este sistema, apoiado pelo sistema de posicionamento global GPS, pode servir de base para uma série de máquinas agrícolas inteligentes, como pulverizadores de herbicidas e outros defensivos utilizados na agricultura.
id USP_3792ca11432f8bbd763c612fb17e6525
oai_identifier_str oai:teses.usp.br:tde-12022003-123905
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Identificação de plantas invasoras em tempo real.Weed identification in real time.controle de plantas invasorasimage processingpicão-pretoplantas invasorasprecision agricultureprocessamento de imagenssistema de identificação em tempo realweed controlweed identification in real timeweedsA identificação de plantas invasoras é de extrema importância em diversos procedimentos utilizados na agricultura. Apesar de ser uma tarefa computacionalmente difícil, esta identificação tem se tornado muito importante no contexto da agricultura de precisão. A agricultura de precisão substitui os tratos culturais de grandes áreas da cultura, feitos pela média do nível dos problemas encontrados nessas áreas, por tratamento específicos e pontuais. As pricipais vantagens são o aumento de produtividade, relacionado com a diminuição da variabilidade na produção, a economia de insumos e a preservação do meio ambiente. Este trabalho enfoca o reconhecimento de plantas invasoras em tempo real. Para manter o requisito de tempo real, são utilizadas redes neurais artificiais como meio para o reconhecimento de padrões. Entre as diversas plantas invasoras de ocorrência freqüente no cerrado brasileiro, foi selecionado o picão preto para a avaliação das técnicas adotadas. Uma arquitetura modular de reconhecimento é proposta, com o uso de processamento paralelo, facilitando a inclusão de módulos de reconhecimento de outras plantas invasoras sem a deterioração do desempenho do sistema. Os resultados obtidos são amplamente satisfatórios, demonstrando a possibilidade do desenvolvimento de um sistema embarcado completo de identificação de plantas invasoras em tempo real. Este sistema, apoiado pelo sistema de posicionamento global GPS, pode servir de base para uma série de máquinas agrícolas inteligentes, como pulverizadores de herbicidas e outros defensivos utilizados na agricultura.Weed identification is an important task in many agricultural procedures. In spite of being a computation intensive task, this identification is very important in the role of precision agriculture. Conventional procedures in agriculture are based on the average level of the problems found in large areas. Precision agriculture introduces new punctual management procedures, dealing with very small areas. The main advantages are: productivity increase, related with the decrease in production unevenness, economy and environment preservation. This work focuses on the real time recognition of weeds. To maintain the real time requirement, neural networks are used to carry out the recognition of image patterns. Among the several weeds frequently found in the Brazilian savannah, the "picão preto" was selected for the evaluation of the adopted techniques. A modular architecture is proposed, using parallel processing, making easier the use of new recognition modules (for other weeds), still preserving the real time capabilities of the system. Results obtained are thoroughly adequate, demonstrating the possibility of the development of embedded systems for the identification of several weeds in real time. These systems, jointly with the global positioning system (GPS), can be used in a family of intelligent equipment, such as spraying machines for herbicides and other agricultural products. Biblioteca Digitais de Teses e Dissertações da USPTrindade Junior, OnofrePernomian, Viviane Araujo2002-11-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-12022003-123905/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:08:16Zoai:teses.usp.br:tde-12022003-123905Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:08:16Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Identificação de plantas invasoras em tempo real.
Weed identification in real time.
title Identificação de plantas invasoras em tempo real.
spellingShingle Identificação de plantas invasoras em tempo real.
Pernomian, Viviane Araujo
controle de plantas invasoras
image processing
picão-preto
plantas invasoras
precision agriculture
processamento de imagens
sistema de identificação em tempo real
weed control
weed identification in real time
weeds
title_short Identificação de plantas invasoras em tempo real.
title_full Identificação de plantas invasoras em tempo real.
title_fullStr Identificação de plantas invasoras em tempo real.
title_full_unstemmed Identificação de plantas invasoras em tempo real.
title_sort Identificação de plantas invasoras em tempo real.
author Pernomian, Viviane Araujo
author_facet Pernomian, Viviane Araujo
author_role author
dc.contributor.none.fl_str_mv Trindade Junior, Onofre
dc.contributor.author.fl_str_mv Pernomian, Viviane Araujo
dc.subject.por.fl_str_mv controle de plantas invasoras
image processing
picão-preto
plantas invasoras
precision agriculture
processamento de imagens
sistema de identificação em tempo real
weed control
weed identification in real time
weeds
topic controle de plantas invasoras
image processing
picão-preto
plantas invasoras
precision agriculture
processamento de imagens
sistema de identificação em tempo real
weed control
weed identification in real time
weeds
description A identificação de plantas invasoras é de extrema importância em diversos procedimentos utilizados na agricultura. Apesar de ser uma tarefa computacionalmente difícil, esta identificação tem se tornado muito importante no contexto da agricultura de precisão. A agricultura de precisão substitui os tratos culturais de grandes áreas da cultura, feitos pela média do nível dos problemas encontrados nessas áreas, por tratamento específicos e pontuais. As pricipais vantagens são o aumento de produtividade, relacionado com a diminuição da variabilidade na produção, a economia de insumos e a preservação do meio ambiente. Este trabalho enfoca o reconhecimento de plantas invasoras em tempo real. Para manter o requisito de tempo real, são utilizadas redes neurais artificiais como meio para o reconhecimento de padrões. Entre as diversas plantas invasoras de ocorrência freqüente no cerrado brasileiro, foi selecionado o picão preto para a avaliação das técnicas adotadas. Uma arquitetura modular de reconhecimento é proposta, com o uso de processamento paralelo, facilitando a inclusão de módulos de reconhecimento de outras plantas invasoras sem a deterioração do desempenho do sistema. Os resultados obtidos são amplamente satisfatórios, demonstrando a possibilidade do desenvolvimento de um sistema embarcado completo de identificação de plantas invasoras em tempo real. Este sistema, apoiado pelo sistema de posicionamento global GPS, pode servir de base para uma série de máquinas agrícolas inteligentes, como pulverizadores de herbicidas e outros defensivos utilizados na agricultura.
publishDate 2002
dc.date.none.fl_str_mv 2002-11-28
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55134/tde-12022003-123905/
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-12022003-123905/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258049695186944