A graph-based approach for online multi-object tracking in structured videos with an application to action recognition

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Morimitsu, Henrique
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45134/tde-13012016-101607/
Resumo: In this thesis we propose a novel approach for tracking multiple objects using structural information. The objects are tracked by combining particle filter and frame description with Attributed Relational Graphs (ARGs). We start by learning a structural probabilistic model graph from annotated images. The graphs are then used to evaluate the current tracking state and to correct it, if necessary. By doing so, the proposed method is able to deal with challenging situations such as abrupt motion and tracking loss due to occlusion. The main contribution of this thesis is the exploration of the learned probabilistic structural model. By using it, the structural information of the scene itself is used to guide the object detection process in case of tracking loss. This approach differs from previous works, that use structural information only to evaluate the scene, but do not consider it to generate new tracking hypotheses. The proposed approach is very flexible and it can be applied to any situation in which it is possible to find structural relation patterns between the objects. Object tracking may be used in many practical applications, such as surveillance, activity analysis or autonomous navigation. In this thesis, we explore it to track multiple objects in sports videos, where the rules of the game create some structural patterns between the objects. Besides detecting the objects, the tracking results are also used as an input for recognizing the action each player is performing. This step is performed by classifying a segment of the tracking sequence using Hidden Markov Models (HMMs). The proposed tracking method is tested on several videos of table tennis matches and on the ACASVA dataset, showing that the method is able to continue tracking the objects even after occlusion or when there is a camera cut.
id USP_37fab02895211a6204047d76682326ca
oai_identifier_str oai:teses.usp.br:tde-13012016-101607
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling A graph-based approach for online multi-object tracking in structured videos with an application to action recognitionUma abordagem baseada em grafos para rastreamento de múltiplos objetos em vídeos estruturados com um aplicação para o reconhecimento de açõesAction recognitionFiltro de partículasGrafoGraphInformação estruturalObject trackingParticle filterRastreamento de objetosReconhecimento de açõesStructural informationIn this thesis we propose a novel approach for tracking multiple objects using structural information. The objects are tracked by combining particle filter and frame description with Attributed Relational Graphs (ARGs). We start by learning a structural probabilistic model graph from annotated images. The graphs are then used to evaluate the current tracking state and to correct it, if necessary. By doing so, the proposed method is able to deal with challenging situations such as abrupt motion and tracking loss due to occlusion. The main contribution of this thesis is the exploration of the learned probabilistic structural model. By using it, the structural information of the scene itself is used to guide the object detection process in case of tracking loss. This approach differs from previous works, that use structural information only to evaluate the scene, but do not consider it to generate new tracking hypotheses. The proposed approach is very flexible and it can be applied to any situation in which it is possible to find structural relation patterns between the objects. Object tracking may be used in many practical applications, such as surveillance, activity analysis or autonomous navigation. In this thesis, we explore it to track multiple objects in sports videos, where the rules of the game create some structural patterns between the objects. Besides detecting the objects, the tracking results are also used as an input for recognizing the action each player is performing. This step is performed by classifying a segment of the tracking sequence using Hidden Markov Models (HMMs). The proposed tracking method is tested on several videos of table tennis matches and on the ACASVA dataset, showing that the method is able to continue tracking the objects even after occlusion or when there is a camera cut.Nesta tese, uma nova abordagem para o rastreamento de múltiplos objetos com o uso de informação estrutural é proposta. Os objetos são rastreados usando uma combinação de filtro de partículas com descrição das imagens por meio de Grafos Relacionais com Atributos (ARGs). O processo é iniciado a partir do aprendizado de um modelo de grafo estrutural probabilístico utilizando imagens anotadas. Os grafos são usados para avaliar o estado atual do rastreamento e corrigi-lo, se necessário. Desta forma, o método proposto é capaz de lidar com situações desafiadoras como movimento abrupto e perda de rastreamento devido à oclusão. A principal contribuição desta tese é a exploração do modelo estrutural aprendido. Por meio dele, a própria informação estrutural da cena é usada para guiar o processo de detecção em caso de perda do objeto. Tal abordagem difere de trabalhos anteriores, que utilizam informação estrutural apenas para avaliar o estado da cena, mas não a consideram para gerar novas hipóteses de rastreamento. A abordagem proposta é bastante flexível e pode ser aplicada em qualquer situação em que seja possível encontrar padrões de relações estruturais entre os objetos. O rastreamento de objetos pode ser utilizado para diversas aplicações práticas, tais como vigilância, análise de atividades ou navegação autônoma. Nesta tese, ele é explorado para rastrear diversos objetos em vídeos de esporte, na qual as regras do jogo criam alguns padrões estruturais entre os objetos. Além de detectar os objetos, os resultados de rastreamento também são usados como entrada para reconhecer a ação que cada jogador está realizando. Esta etapa é executada classificando um segmento da sequência de rastreamento por meio de Modelos Ocultos de Markov (HMMs). A abordagem de rastreamento proposta é testada em diversos vídeos de jogos de tênis de mesa e na base de dados ACASVA, demonstrando a capacidade do método de lidar com situações de oclusão ou cortes de câmera.Biblioteca Digitais de Teses e Dissertações da USPCesar Junior, Roberto MarcondesMorimitsu, Henrique2015-10-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45134/tde-13012016-101607/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2017-09-04T21:06:17Zoai:teses.usp.br:tde-13012016-101607Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212017-09-04T21:06:17Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv A graph-based approach for online multi-object tracking in structured videos with an application to action recognition
Uma abordagem baseada em grafos para rastreamento de múltiplos objetos em vídeos estruturados com um aplicação para o reconhecimento de ações
title A graph-based approach for online multi-object tracking in structured videos with an application to action recognition
spellingShingle A graph-based approach for online multi-object tracking in structured videos with an application to action recognition
Morimitsu, Henrique
Action recognition
Filtro de partículas
Grafo
Graph
Informação estrutural
Object tracking
Particle filter
Rastreamento de objetos
Reconhecimento de ações
Structural information
title_short A graph-based approach for online multi-object tracking in structured videos with an application to action recognition
title_full A graph-based approach for online multi-object tracking in structured videos with an application to action recognition
title_fullStr A graph-based approach for online multi-object tracking in structured videos with an application to action recognition
title_full_unstemmed A graph-based approach for online multi-object tracking in structured videos with an application to action recognition
title_sort A graph-based approach for online multi-object tracking in structured videos with an application to action recognition
author Morimitsu, Henrique
author_facet Morimitsu, Henrique
author_role author
dc.contributor.none.fl_str_mv Cesar Junior, Roberto Marcondes
dc.contributor.author.fl_str_mv Morimitsu, Henrique
dc.subject.por.fl_str_mv Action recognition
Filtro de partículas
Grafo
Graph
Informação estrutural
Object tracking
Particle filter
Rastreamento de objetos
Reconhecimento de ações
Structural information
topic Action recognition
Filtro de partículas
Grafo
Graph
Informação estrutural
Object tracking
Particle filter
Rastreamento de objetos
Reconhecimento de ações
Structural information
description In this thesis we propose a novel approach for tracking multiple objects using structural information. The objects are tracked by combining particle filter and frame description with Attributed Relational Graphs (ARGs). We start by learning a structural probabilistic model graph from annotated images. The graphs are then used to evaluate the current tracking state and to correct it, if necessary. By doing so, the proposed method is able to deal with challenging situations such as abrupt motion and tracking loss due to occlusion. The main contribution of this thesis is the exploration of the learned probabilistic structural model. By using it, the structural information of the scene itself is used to guide the object detection process in case of tracking loss. This approach differs from previous works, that use structural information only to evaluate the scene, but do not consider it to generate new tracking hypotheses. The proposed approach is very flexible and it can be applied to any situation in which it is possible to find structural relation patterns between the objects. Object tracking may be used in many practical applications, such as surveillance, activity analysis or autonomous navigation. In this thesis, we explore it to track multiple objects in sports videos, where the rules of the game create some structural patterns between the objects. Besides detecting the objects, the tracking results are also used as an input for recognizing the action each player is performing. This step is performed by classifying a segment of the tracking sequence using Hidden Markov Models (HMMs). The proposed tracking method is tested on several videos of table tennis matches and on the ACASVA dataset, showing that the method is able to continue tracking the objects even after occlusion or when there is a camera cut.
publishDate 2015
dc.date.none.fl_str_mv 2015-10-20
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/45/45134/tde-13012016-101607/
url http://www.teses.usp.br/teses/disponiveis/45/45134/tde-13012016-101607/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258153461219328