Explorando técnicas para a localização e identificação de potenciais usuários de transporte público urbano

Detalhes bibliográficos
Ano de defesa: 2011
Autor(a) principal: Alves, Victor Frazão Barreto
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/18/18144/tde-06062011-171853/
Resumo: Um dos objetivos dos projetos e estudos na área de transporte público é atrair o maior número possível de viagens. Um primeiro passo para estimular uma maior utilização do transporte público pode ser a captação de pessoas que já têm predisposição para utilizá-lo, mas que não o fazem por alguma deficiência específica no serviço. Este é o contexto no qual mapas que representam o potencial de utilização dos transportes públicos podem desempenhar um papel importante, como discutido neste estudo. A pesquisa tem como objetivo principal a aplicação e avaliação de duas técnicas destinadas a identificar potenciais usuários de transporte público e como estes se distribuem geograficamente em uma cidade brasileira selecionada para o estudo. Nas técnicas aqui exploradas, o município em análise é dividido em áreas em função do código de endereçamento postal. Estas áreas são caracterizadas pelos atributos socioeconômicos da sua população e do sistema de transporte. Diante da hipótese de melhoria na qualidade do transporte público, dois segmentos de usuários de automóvel foram determinados: usuários que trocariam para ônibus e usuários que ainda preferem o carro. Com isso, foi construído um modelo capaz de representar o comportamento de escolha dos usuários de cada área. A metodologia proposta envolve quatro passos: i) comparação de modelos Logit elaborados com dados de São Carlos (Brasil) e Wageningen (Holanda), ii) ajustes no modelo de São Carlos, iii) elaboração de um modelo de escolha modal por redes neurais artificiais e iv) elaboração dos mapas potenciais. As duas últimas etapas foram concebidas tanto para análises independentes, como também para comparação com o modelo Logit. Assim, a construção de cenários futuros permitiu identificar e localizar espacialmente os potenciais usuários de transporte público. Foi possível verificar também qual a influência de alguns atributos sobre a escolha do modo de transporte urbano. Por exemplo, usuários de domicílios com três ou quatro pessoas têm menor probabilidade de vir a utilizar o ônibus regularmente. Por fim, um cenário futuro tornou possível destacar áreas onde é esperado um aumento do potencial de uso do transporte público devido a mudanças nos valores de densidade populacional.
id USP_3c525d1007339faa1fb0f554b936b1e7
oai_identifier_str oai:teses.usp.br:tde-06062011-171853
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Explorando técnicas para a localização e identificação de potenciais usuários de transporte público urbanoExploring techniques for the location and identification of potential users of urban public transportationArtificial neural networksDiscrete choice modelsMapas potenciaisMarketing do transporte públicoModelos de escolha discretaPotential mapsPublic transportationPublic transportation marketingRedes neurais artificiaisTransporte públicoUm dos objetivos dos projetos e estudos na área de transporte público é atrair o maior número possível de viagens. Um primeiro passo para estimular uma maior utilização do transporte público pode ser a captação de pessoas que já têm predisposição para utilizá-lo, mas que não o fazem por alguma deficiência específica no serviço. Este é o contexto no qual mapas que representam o potencial de utilização dos transportes públicos podem desempenhar um papel importante, como discutido neste estudo. A pesquisa tem como objetivo principal a aplicação e avaliação de duas técnicas destinadas a identificar potenciais usuários de transporte público e como estes se distribuem geograficamente em uma cidade brasileira selecionada para o estudo. Nas técnicas aqui exploradas, o município em análise é dividido em áreas em função do código de endereçamento postal. Estas áreas são caracterizadas pelos atributos socioeconômicos da sua população e do sistema de transporte. Diante da hipótese de melhoria na qualidade do transporte público, dois segmentos de usuários de automóvel foram determinados: usuários que trocariam para ônibus e usuários que ainda preferem o carro. Com isso, foi construído um modelo capaz de representar o comportamento de escolha dos usuários de cada área. A metodologia proposta envolve quatro passos: i) comparação de modelos Logit elaborados com dados de São Carlos (Brasil) e Wageningen (Holanda), ii) ajustes no modelo de São Carlos, iii) elaboração de um modelo de escolha modal por redes neurais artificiais e iv) elaboração dos mapas potenciais. As duas últimas etapas foram concebidas tanto para análises independentes, como também para comparação com o modelo Logit. Assim, a construção de cenários futuros permitiu identificar e localizar espacialmente os potenciais usuários de transporte público. Foi possível verificar também qual a influência de alguns atributos sobre a escolha do modo de transporte urbano. Por exemplo, usuários de domicílios com três ou quatro pessoas têm menor probabilidade de vir a utilizar o ônibus regularmente. Por fim, um cenário futuro tornou possível destacar áreas onde é esperado um aumento do potencial de uso do transporte público devido a mudanças nos valores de densidade populacional.One of the objectives of projects and studies on public transport is to attract the largest possible number of trips. A first step for increasing transit ridership may be the attraction of those individuals who already have a predisposition to use the service, but do not use it because of any specific inadequacies. This is the context in which maps displaying the potential use of public transport may play an important role, as discussed in this study. The research aims at the application and evaluation of two techniques used to identify potential users of public transport and to show how they are geographically distributed in a Brazilian city selected for the study. In the techniques discussed here, the municipality under analysis is divided into areas according to the postal codes of the streets. These areas are characterized by socioeconomic attributes of the population and of the transport system. Two segments of automobile users were determined, under the assumption that the quality of public transport would be improved: users who would switch to buses and users who still prefer the car. Based on that, a model designed to represent the choice behavior of users in each urban area was built. The proposed methodology involved four steps: i) the comparison of Logit models built with data of São Carlos (Brazil) and Wageningen (The Netherlands), ii) adjustments in the model of São Carlos, iii) the development of a mode choice model based on artificial neural networks, and iv) construction of potential maps. The third and fourth steps were meant for both independent analysis, and also for comparison with the Logit model. Thus, the construction of future scenarios allowed the identification and spatial location of potential users of public transport. It was also possible to learn about the influence of some attributes on urban transportation choice. For example, users living in households with three or four persons are less likely to become bus riders. Finally, a future scenario was able to highlight the areas where the potential for public transport could be increased due to changes in population density values.Biblioteca Digitais de Teses e Dissertações da USPSilva, Antonio Nelson Rodrigues daAlves, Victor Frazão Barreto2011-05-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/18/18144/tde-06062011-171853/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-10-09T13:16:04Zoai:teses.usp.br:tde-06062011-171853Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T13:16:04Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Explorando técnicas para a localização e identificação de potenciais usuários de transporte público urbano
Exploring techniques for the location and identification of potential users of urban public transportation
title Explorando técnicas para a localização e identificação de potenciais usuários de transporte público urbano
spellingShingle Explorando técnicas para a localização e identificação de potenciais usuários de transporte público urbano
Alves, Victor Frazão Barreto
Artificial neural networks
Discrete choice models
Mapas potenciais
Marketing do transporte público
Modelos de escolha discreta
Potential maps
Public transportation
Public transportation marketing
Redes neurais artificiais
Transporte público
title_short Explorando técnicas para a localização e identificação de potenciais usuários de transporte público urbano
title_full Explorando técnicas para a localização e identificação de potenciais usuários de transporte público urbano
title_fullStr Explorando técnicas para a localização e identificação de potenciais usuários de transporte público urbano
title_full_unstemmed Explorando técnicas para a localização e identificação de potenciais usuários de transporte público urbano
title_sort Explorando técnicas para a localização e identificação de potenciais usuários de transporte público urbano
author Alves, Victor Frazão Barreto
author_facet Alves, Victor Frazão Barreto
author_role author
dc.contributor.none.fl_str_mv Silva, Antonio Nelson Rodrigues da
dc.contributor.author.fl_str_mv Alves, Victor Frazão Barreto
dc.subject.por.fl_str_mv Artificial neural networks
Discrete choice models
Mapas potenciais
Marketing do transporte público
Modelos de escolha discreta
Potential maps
Public transportation
Public transportation marketing
Redes neurais artificiais
Transporte público
topic Artificial neural networks
Discrete choice models
Mapas potenciais
Marketing do transporte público
Modelos de escolha discreta
Potential maps
Public transportation
Public transportation marketing
Redes neurais artificiais
Transporte público
description Um dos objetivos dos projetos e estudos na área de transporte público é atrair o maior número possível de viagens. Um primeiro passo para estimular uma maior utilização do transporte público pode ser a captação de pessoas que já têm predisposição para utilizá-lo, mas que não o fazem por alguma deficiência específica no serviço. Este é o contexto no qual mapas que representam o potencial de utilização dos transportes públicos podem desempenhar um papel importante, como discutido neste estudo. A pesquisa tem como objetivo principal a aplicação e avaliação de duas técnicas destinadas a identificar potenciais usuários de transporte público e como estes se distribuem geograficamente em uma cidade brasileira selecionada para o estudo. Nas técnicas aqui exploradas, o município em análise é dividido em áreas em função do código de endereçamento postal. Estas áreas são caracterizadas pelos atributos socioeconômicos da sua população e do sistema de transporte. Diante da hipótese de melhoria na qualidade do transporte público, dois segmentos de usuários de automóvel foram determinados: usuários que trocariam para ônibus e usuários que ainda preferem o carro. Com isso, foi construído um modelo capaz de representar o comportamento de escolha dos usuários de cada área. A metodologia proposta envolve quatro passos: i) comparação de modelos Logit elaborados com dados de São Carlos (Brasil) e Wageningen (Holanda), ii) ajustes no modelo de São Carlos, iii) elaboração de um modelo de escolha modal por redes neurais artificiais e iv) elaboração dos mapas potenciais. As duas últimas etapas foram concebidas tanto para análises independentes, como também para comparação com o modelo Logit. Assim, a construção de cenários futuros permitiu identificar e localizar espacialmente os potenciais usuários de transporte público. Foi possível verificar também qual a influência de alguns atributos sobre a escolha do modo de transporte urbano. Por exemplo, usuários de domicílios com três ou quatro pessoas têm menor probabilidade de vir a utilizar o ônibus regularmente. Por fim, um cenário futuro tornou possível destacar áreas onde é esperado um aumento do potencial de uso do transporte público devido a mudanças nos valores de densidade populacional.
publishDate 2011
dc.date.none.fl_str_mv 2011-05-10
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/18/18144/tde-06062011-171853/
url http://www.teses.usp.br/teses/disponiveis/18/18144/tde-06062011-171853/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1818279174362628096