Heuristics based on projection occupation measures for probabilistic planning with dead-ends and risk
| Ano de defesa: | 2020 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/45/45134/tde-30062021-195910/ |
Resumo: | In probabilistic planning an agent interacts with an environment and the objective is to find an optimal policy (state-action mapping) that allows the agent to achieve a goal state from an initial state, while minimizing the expected accumulated cost. Efficient solutions for large instances of probabilistic planning are, in general, based on Stochastic Shortest Path (ssp) problems, and use heuristic search techniques. However, these approaches have two limitations: (1) they can not guarantee to return optimal policies in the presence of dead-ends (states from which it is not possible to reach the goal) and (2) they may present a high variance in terms of cost. In instances where unavoidable dead-ends exist, we can plan in two phases: maximizing the probability to reach the goal (maxprob) and then minimizing the expected cost (mincost); or yet, we can define a penalty for reaching a dead-end state and only minimize the expected cost (mincost-with-penalty). While there exist several heuristics to solve the mincost problem, there are no efficient heuristics to solve maxprobproblem. A recent work proposed the first heuristic that takes into account the probabilities, called hpom, which solves a relaxed version of an ssp as a linear program in the dual space. In this work we propose two new heuristics based on hpom to solve probabilistic planning problems with unavoidable dead-ends, that includes new variables and constraints for dead-end states. The first, h_p_pom(s), estimates the maximum probability to reach the goal from s, and is used to efficiently solve maxprob problems by ignoring action costs and considering only the probabilities. The second, used to solve mincost-with-penalty problems, called h_pe_pom(s), estimates the minimal cost to reach the goal from state s and adds an expected penalty for reaching dead-ends. In order to deal with the second limitation of traditional ssp solutions, we propose a third heuristic, called h_rs_pom, also based on hpom, for a modified version of an ssp, called risk sensitive ssp (rs-ssp), whose optimization criterion is to minimize an exponential utility function including a risk factor to characterize the agent attitude as: (i) risk-averse ( > 0); (ii) risk-prone ( < 0); or (iii) risk-neutral ( 0). Empirical results show that the proposed heuristics can solve larger planning instances when compared to the state-of-the-art solutions for ssps with dead-ends and rs-ssp problems. |
| id |
USP_3d215a733f945c103903ea2b89fbc5d2 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-30062021-195910 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Heuristics based on projection occupation measures for probabilistic planning with dead-ends and riskHeurísticas baseadas na projeção de medidas de ocupação para planejamento probabilísticoHeurísticaPlanejamento probabilísticoPlanning as heuristic searchProbabilistic planningRisk sensitive SSPSSP as dual linear programIn probabilistic planning an agent interacts with an environment and the objective is to find an optimal policy (state-action mapping) that allows the agent to achieve a goal state from an initial state, while minimizing the expected accumulated cost. Efficient solutions for large instances of probabilistic planning are, in general, based on Stochastic Shortest Path (ssp) problems, and use heuristic search techniques. However, these approaches have two limitations: (1) they can not guarantee to return optimal policies in the presence of dead-ends (states from which it is not possible to reach the goal) and (2) they may present a high variance in terms of cost. In instances where unavoidable dead-ends exist, we can plan in two phases: maximizing the probability to reach the goal (maxprob) and then minimizing the expected cost (mincost); or yet, we can define a penalty for reaching a dead-end state and only minimize the expected cost (mincost-with-penalty). While there exist several heuristics to solve the mincost problem, there are no efficient heuristics to solve maxprobproblem. A recent work proposed the first heuristic that takes into account the probabilities, called hpom, which solves a relaxed version of an ssp as a linear program in the dual space. In this work we propose two new heuristics based on hpom to solve probabilistic planning problems with unavoidable dead-ends, that includes new variables and constraints for dead-end states. The first, h_p_pom(s), estimates the maximum probability to reach the goal from s, and is used to efficiently solve maxprob problems by ignoring action costs and considering only the probabilities. The second, used to solve mincost-with-penalty problems, called h_pe_pom(s), estimates the minimal cost to reach the goal from state s and adds an expected penalty for reaching dead-ends. In order to deal with the second limitation of traditional ssp solutions, we propose a third heuristic, called h_rs_pom, also based on hpom, for a modified version of an ssp, called risk sensitive ssp (rs-ssp), whose optimization criterion is to minimize an exponential utility function including a risk factor to characterize the agent attitude as: (i) risk-averse ( > 0); (ii) risk-prone ( < 0); or (iii) risk-neutral ( 0). Empirical results show that the proposed heuristics can solve larger planning instances when compared to the state-of-the-art solutions for ssps with dead-ends and rs-ssp problems.não disponívelBiblioteca Digitais de Teses e Dissertações da USPBarros, Leliane Nunes deFernández, Milton Raúl Condori2020-02-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45134/tde-30062021-195910/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-09-03T18:03:03Zoai:teses.usp.br:tde-30062021-195910Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-09-03T18:03:03Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Heuristics based on projection occupation measures for probabilistic planning with dead-ends and risk Heurísticas baseadas na projeção de medidas de ocupação para planejamento probabilístico |
| title |
Heuristics based on projection occupation measures for probabilistic planning with dead-ends and risk |
| spellingShingle |
Heuristics based on projection occupation measures for probabilistic planning with dead-ends and risk Fernández, Milton Raúl Condori Heurística Planejamento probabilístico Planning as heuristic search Probabilistic planning Risk sensitive SSP SSP as dual linear program |
| title_short |
Heuristics based on projection occupation measures for probabilistic planning with dead-ends and risk |
| title_full |
Heuristics based on projection occupation measures for probabilistic planning with dead-ends and risk |
| title_fullStr |
Heuristics based on projection occupation measures for probabilistic planning with dead-ends and risk |
| title_full_unstemmed |
Heuristics based on projection occupation measures for probabilistic planning with dead-ends and risk |
| title_sort |
Heuristics based on projection occupation measures for probabilistic planning with dead-ends and risk |
| author |
Fernández, Milton Raúl Condori |
| author_facet |
Fernández, Milton Raúl Condori |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Barros, Leliane Nunes de |
| dc.contributor.author.fl_str_mv |
Fernández, Milton Raúl Condori |
| dc.subject.por.fl_str_mv |
Heurística Planejamento probabilístico Planning as heuristic search Probabilistic planning Risk sensitive SSP SSP as dual linear program |
| topic |
Heurística Planejamento probabilístico Planning as heuristic search Probabilistic planning Risk sensitive SSP SSP as dual linear program |
| description |
In probabilistic planning an agent interacts with an environment and the objective is to find an optimal policy (state-action mapping) that allows the agent to achieve a goal state from an initial state, while minimizing the expected accumulated cost. Efficient solutions for large instances of probabilistic planning are, in general, based on Stochastic Shortest Path (ssp) problems, and use heuristic search techniques. However, these approaches have two limitations: (1) they can not guarantee to return optimal policies in the presence of dead-ends (states from which it is not possible to reach the goal) and (2) they may present a high variance in terms of cost. In instances where unavoidable dead-ends exist, we can plan in two phases: maximizing the probability to reach the goal (maxprob) and then minimizing the expected cost (mincost); or yet, we can define a penalty for reaching a dead-end state and only minimize the expected cost (mincost-with-penalty). While there exist several heuristics to solve the mincost problem, there are no efficient heuristics to solve maxprobproblem. A recent work proposed the first heuristic that takes into account the probabilities, called hpom, which solves a relaxed version of an ssp as a linear program in the dual space. In this work we propose two new heuristics based on hpom to solve probabilistic planning problems with unavoidable dead-ends, that includes new variables and constraints for dead-end states. The first, h_p_pom(s), estimates the maximum probability to reach the goal from s, and is used to efficiently solve maxprob problems by ignoring action costs and considering only the probabilities. The second, used to solve mincost-with-penalty problems, called h_pe_pom(s), estimates the minimal cost to reach the goal from state s and adds an expected penalty for reaching dead-ends. In order to deal with the second limitation of traditional ssp solutions, we propose a third heuristic, called h_rs_pom, also based on hpom, for a modified version of an ssp, called risk sensitive ssp (rs-ssp), whose optimization criterion is to minimize an exponential utility function including a risk factor to characterize the agent attitude as: (i) risk-averse ( > 0); (ii) risk-prone ( < 0); or (iii) risk-neutral ( 0). Empirical results show that the proposed heuristics can solve larger planning instances when compared to the state-of-the-art solutions for ssps with dead-ends and rs-ssp problems. |
| publishDate |
2020 |
| dc.date.none.fl_str_mv |
2020-02-18 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/45/45134/tde-30062021-195910/ |
| url |
https://www.teses.usp.br/teses/disponiveis/45/45134/tde-30062021-195910/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1815258594047688704 |