Skin lesion monitoring and reconstruction using computational methods and monte carlo simulations in biomedical optics
| Ano de defesa: | 2025 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/76/76135/tde-06102025-080843/ |
Resumo: | Accurate volumetric analysis of skin lesions plays a crucial role in both clinical and preclinical research. In the clinical setting, it provides objective metrics for monitoring disease progression, assessing treatment response, and guiding therapeutic decisions. In preclinical studies, reliable lesion quantification is equally important for evaluating experimental therapies and establishing ethical endpoints in animal models. Despite its importance, conventional measurement techniques—such as manual use of calipers and rulers—are limited by operator variability and reduced reproducibility, highlighting the need for more robust and automated approaches.This work presents a computational pipeline developed to estimate lesion volumes from single RGB images, without relying on dedicated depth sensors. The method combines monocular depth estimation—using the MiDaS model—with 3D reconstruction and voxelization, allowing lesion morphology to be preserved and volume to be computed through voxel counting. The pipeline was tested in stages of increasing complexity. Initially, simulations with virtual objects of known geometry were used to confirm the mathematical reliability of the approach. The method was then applied to physical models, including 3D-printed and handcrafted objects, showing strong agreement between estimated and reference volumes (above 98% in ideal conditions). In vivo validation was conducted using murine models with cutaneous lesions, demonstrating the feasibility of applying the method in more realistic and variable conditions. In addition to volume estimation, the reconstructed voxelized structures were incorporated into light transport simulations using the Monte Carlo eXtreme (MCX) framework. This integration demonstrated that depth-based reconstructions can be used to create spatial domains for photon propagation modeling, which may be useful in biomedical optics applications such as phototherapy planning or optical diagnostics. The pipeline proved to be low-cost, accessible, and adaptable. It runs on standard computers and can be used without the need for specialized equipment, making it a potentially valuable tool for laboratories or clinical research environments. Scripts and tools developed for this project are available in open-source platforms to support future improvements and broader use in research or applied settings. |
| id |
USP_3efec843389329a07fc30df839d5a78b |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-06102025-080843 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Skin lesion monitoring and reconstruction using computational methods and monte carlo simulations in biomedical opticsMonitoramento e reconstrução de lesões de pele utilizando métodos computacionais e simulações de Monte Carlo em óptica biomédica3D reconstructionAnálise de lesõesEstimativa de volumeImagem médicaLesion analysisMedical imagingMonte Carlo simulationReconstrução 3DSimulação de Monte CarloVolume estimationAccurate volumetric analysis of skin lesions plays a crucial role in both clinical and preclinical research. In the clinical setting, it provides objective metrics for monitoring disease progression, assessing treatment response, and guiding therapeutic decisions. In preclinical studies, reliable lesion quantification is equally important for evaluating experimental therapies and establishing ethical endpoints in animal models. Despite its importance, conventional measurement techniques—such as manual use of calipers and rulers—are limited by operator variability and reduced reproducibility, highlighting the need for more robust and automated approaches.This work presents a computational pipeline developed to estimate lesion volumes from single RGB images, without relying on dedicated depth sensors. The method combines monocular depth estimation—using the MiDaS model—with 3D reconstruction and voxelization, allowing lesion morphology to be preserved and volume to be computed through voxel counting. The pipeline was tested in stages of increasing complexity. Initially, simulations with virtual objects of known geometry were used to confirm the mathematical reliability of the approach. The method was then applied to physical models, including 3D-printed and handcrafted objects, showing strong agreement between estimated and reference volumes (above 98% in ideal conditions). In vivo validation was conducted using murine models with cutaneous lesions, demonstrating the feasibility of applying the method in more realistic and variable conditions. In addition to volume estimation, the reconstructed voxelized structures were incorporated into light transport simulations using the Monte Carlo eXtreme (MCX) framework. This integration demonstrated that depth-based reconstructions can be used to create spatial domains for photon propagation modeling, which may be useful in biomedical optics applications such as phototherapy planning or optical diagnostics. The pipeline proved to be low-cost, accessible, and adaptable. It runs on standard computers and can be used without the need for specialized equipment, making it a potentially valuable tool for laboratories or clinical research environments. Scripts and tools developed for this project are available in open-source platforms to support future improvements and broader use in research or applied settings.A análise volumétrica precisa de lesões cutâneas desempenha um papel crucial tanto na pesquisa clínica quanto na pré-clínica. No contexto clínico, ela fornece métricas objetivas para o monitoramento da progressão da doença, avaliação da resposta ao tratamento e apoio às decisões terapêuticas. Em estudos pré-clínicos, a quantificação confiável das lesões é igualmente importante para a avaliação de terapias experimentais e para o estabelecimento de critérios éticos de desfecho em modelos animais. Apesar de sua relevância, as técnicas convencionais de medição — como o uso manual de paquímetros e réguas — são limitadas pela variabilidade do operador e pela baixa reprodutibilidade, evidenciando a necessidade de abordagens mais robustas e automatizadas.Este trabalho apresenta um pipeline computacional desenvolvido para estimar volumes de lesões a partir de imagens RGB, sem depender de sensores de profundidade dedicados. O método combina estimação monocular de profundidade — utilizando o modelo MiDaS — com reconstrução 3D e voxelização, permitindo preservar a morfologia da lesão e calcular seu volume por meio da contagem de voxels. O pipeline foi testado em etapas de complexidade crescente. Inicialmente, simulações com objetos virtuais de geometria conhecida foram utilizadas para confirmar a confiabilidade matemática da abordagem. Em seguida, o método foi aplicado a modelos físicos, incluindo objetos impressos em 3D e artesanais, mostrando forte concordância entre volumes estimados e de referência (acima de 98% em condições ideais). A validação in vivo foi realizada em modelos murinos com lesões cutâneas, demonstrando a viabilidade da aplicação do método em condições mais realistas e variáveis. Além da estimativa volumétrica, as estruturas voxelizadas reconstruídas foram incorporadas em simulações de transporte de fótons utilizando o framework Monte Carlo eXtreme (MCX). Essa integração demonstrou que reconstruções baseadas em mapas de profundidade podem ser usadas para criar domínios espaciais em modelos de propagação de fótons, com potencial aplicação em áreas da óptica biomédica, como planejamento de fototerapia ou diagnósticos ópticos. O pipeline mostrou-se de baixo custo, acessível e adaptável. Ele pode ser executado em computadores convencionais e utilizado sem a necessidade de equipamentos especializados, tornando-se uma ferramenta potencialmente valiosa para laboratórios ou ambientes de pesquisa clínica. Os scripts e ferramentas desenvolvidos neste projeto estão disponíveis em plataformas de código aberto, a fim de apoiar futuros aprimoramentos e ampliar seu uso em pesquisas e aplicações práticas.Biblioteca Digitais de Teses e Dissertações da USPMoriyama, Lilian TanPalamoni, Otávio Perez2025-08-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/76/76135/tde-06102025-080843/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-10-06T12:31:02Zoai:teses.usp.br:tde-06102025-080843Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-10-06T12:31:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Skin lesion monitoring and reconstruction using computational methods and monte carlo simulations in biomedical optics Monitoramento e reconstrução de lesões de pele utilizando métodos computacionais e simulações de Monte Carlo em óptica biomédica |
| title |
Skin lesion monitoring and reconstruction using computational methods and monte carlo simulations in biomedical optics |
| spellingShingle |
Skin lesion monitoring and reconstruction using computational methods and monte carlo simulations in biomedical optics Palamoni, Otávio Perez 3D reconstruction Análise de lesões Estimativa de volume Imagem médica Lesion analysis Medical imaging Monte Carlo simulation Reconstrução 3D Simulação de Monte Carlo Volume estimation |
| title_short |
Skin lesion monitoring and reconstruction using computational methods and monte carlo simulations in biomedical optics |
| title_full |
Skin lesion monitoring and reconstruction using computational methods and monte carlo simulations in biomedical optics |
| title_fullStr |
Skin lesion monitoring and reconstruction using computational methods and monte carlo simulations in biomedical optics |
| title_full_unstemmed |
Skin lesion monitoring and reconstruction using computational methods and monte carlo simulations in biomedical optics |
| title_sort |
Skin lesion monitoring and reconstruction using computational methods and monte carlo simulations in biomedical optics |
| author |
Palamoni, Otávio Perez |
| author_facet |
Palamoni, Otávio Perez |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Moriyama, Lilian Tan |
| dc.contributor.author.fl_str_mv |
Palamoni, Otávio Perez |
| dc.subject.por.fl_str_mv |
3D reconstruction Análise de lesões Estimativa de volume Imagem médica Lesion analysis Medical imaging Monte Carlo simulation Reconstrução 3D Simulação de Monte Carlo Volume estimation |
| topic |
3D reconstruction Análise de lesões Estimativa de volume Imagem médica Lesion analysis Medical imaging Monte Carlo simulation Reconstrução 3D Simulação de Monte Carlo Volume estimation |
| description |
Accurate volumetric analysis of skin lesions plays a crucial role in both clinical and preclinical research. In the clinical setting, it provides objective metrics for monitoring disease progression, assessing treatment response, and guiding therapeutic decisions. In preclinical studies, reliable lesion quantification is equally important for evaluating experimental therapies and establishing ethical endpoints in animal models. Despite its importance, conventional measurement techniques—such as manual use of calipers and rulers—are limited by operator variability and reduced reproducibility, highlighting the need for more robust and automated approaches.This work presents a computational pipeline developed to estimate lesion volumes from single RGB images, without relying on dedicated depth sensors. The method combines monocular depth estimation—using the MiDaS model—with 3D reconstruction and voxelization, allowing lesion morphology to be preserved and volume to be computed through voxel counting. The pipeline was tested in stages of increasing complexity. Initially, simulations with virtual objects of known geometry were used to confirm the mathematical reliability of the approach. The method was then applied to physical models, including 3D-printed and handcrafted objects, showing strong agreement between estimated and reference volumes (above 98% in ideal conditions). In vivo validation was conducted using murine models with cutaneous lesions, demonstrating the feasibility of applying the method in more realistic and variable conditions. In addition to volume estimation, the reconstructed voxelized structures were incorporated into light transport simulations using the Monte Carlo eXtreme (MCX) framework. This integration demonstrated that depth-based reconstructions can be used to create spatial domains for photon propagation modeling, which may be useful in biomedical optics applications such as phototherapy planning or optical diagnostics. The pipeline proved to be low-cost, accessible, and adaptable. It runs on standard computers and can be used without the need for specialized equipment, making it a potentially valuable tool for laboratories or clinical research environments. Scripts and tools developed for this project are available in open-source platforms to support future improvements and broader use in research or applied settings. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-08-07 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/76/76135/tde-06102025-080843/ |
| url |
https://www.teses.usp.br/teses/disponiveis/76/76135/tde-06102025-080843/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1848370471244922880 |