Análise de cheias anuais segundo distribuição generalizada

Detalhes bibliográficos
Ano de defesa: 2002
Autor(a) principal: Queiroz, Manoel Moisés Ferreira de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/18/18138/tde-29032016-112620/
Resumo: A análise de freqüência de cheias através da distribuição de probabilidade generalizada de valores extremos-GEV tem crescido nos últimos anos. A estimação de altos quantis de cheias é comumente praticada extrapolando o ajuste, representado por uma das 3 formas inversas de distribuição GEV, para períodos de retorno bem superiores ao período dos dados observados. Eventos hidrológicos ocorrem na natureza com valores finitos, tal que, seus valores máximos seguem a forma assintótica da GEV limitada. Neste trabalho estuda-se a estimabilidade da distribuição GEV através de momentos LH, usando séries de cheias anuais com diferentes características e comprimentos, obtidas de séries de vazões diária gerada de diversas formas. Primeiramente, sequências estocásticas de vazões diárias foram obtidas da distribuição limitada como subjacente da distribuição GEV limitada. Os resultados da estimação dos parâmetros via momentos-LH, mostram que o ajuste da distribuição GEV as amostras de cheias anuais com menos de 100 valores, pode indicar qualquer forma de distribuição de valores extremos e não somente a forma limitada como seria esperado. Também, houve grande incerteza na estimação dos parâmetros obtidos de 50 séries geradas de uma mesma distribuição. Ajustes da distribuição GEV às séries de vazões anuais, obtidas séries de fluxo diários gerados com 4 modelos estocásticos disponíveis na literatura e calibrados aos dados dos rio Paraná e dos Patos, resultaram na forma de Gumbel. Propõe-se um modelo de geração diária que simula picos de vazões usando a distribuição limitada. O ajuste do novo modelo às vazões diárias do rio Paraná reproduziu as estatísticas diárias, mensais, anuais, assim como os valores extremos da série histórica. Além disso, a série das cheias anuais com longa duração, foi adequadamente descrita pela forma da distribuição GEV limitada.
id USP_42e0b04a888a67f86cff5613e676b9e9
oai_identifier_str oai:teses.usp.br:tde-29032016-112620
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Análise de cheias anuais segundo distribuição generalizadaAnalysis of annual floods by generalized distributionDaily flow modelsDistribuição limitadaEstatística de extremosEstimabilidade da distribuição GEVIdentifiability of GEV distributionLH-momentsLimited distributionModelos de vazões diáriasMomentos LHSimulação estocásticaStatistics of extremesStochastic simulationA análise de freqüência de cheias através da distribuição de probabilidade generalizada de valores extremos-GEV tem crescido nos últimos anos. A estimação de altos quantis de cheias é comumente praticada extrapolando o ajuste, representado por uma das 3 formas inversas de distribuição GEV, para períodos de retorno bem superiores ao período dos dados observados. Eventos hidrológicos ocorrem na natureza com valores finitos, tal que, seus valores máximos seguem a forma assintótica da GEV limitada. Neste trabalho estuda-se a estimabilidade da distribuição GEV através de momentos LH, usando séries de cheias anuais com diferentes características e comprimentos, obtidas de séries de vazões diária gerada de diversas formas. Primeiramente, sequências estocásticas de vazões diárias foram obtidas da distribuição limitada como subjacente da distribuição GEV limitada. Os resultados da estimação dos parâmetros via momentos-LH, mostram que o ajuste da distribuição GEV as amostras de cheias anuais com menos de 100 valores, pode indicar qualquer forma de distribuição de valores extremos e não somente a forma limitada como seria esperado. Também, houve grande incerteza na estimação dos parâmetros obtidos de 50 séries geradas de uma mesma distribuição. Ajustes da distribuição GEV às séries de vazões anuais, obtidas séries de fluxo diários gerados com 4 modelos estocásticos disponíveis na literatura e calibrados aos dados dos rio Paraná e dos Patos, resultaram na forma de Gumbel. Propõe-se um modelo de geração diária que simula picos de vazões usando a distribuição limitada. O ajuste do novo modelo às vazões diárias do rio Paraná reproduziu as estatísticas diárias, mensais, anuais, assim como os valores extremos da série histórica. Além disso, a série das cheias anuais com longa duração, foi adequadamente descrita pela forma da distribuição GEV limitada.Frequency analysis of floods by Generalized Extreme Value probability distribution has multiplied in the last few years. The estimations of high quantile floods is commonly practiced extrapolating the adjustment represented by one of the three forms of inverse GEV distribution for the return periods much greater than the period of observation. The hydrologic events occur in nature with finite values such that their maximum values follow the asymptotic form of limited GEV distribution. This work studies the identifiability of GEV distribution by LH-moments using annual flood series of different characteristics and lengths, obtained from daily flow series generated by various methods. Firstly, stochastic sequences of daily flows were obtained from the limited distribution underlying the GEV limited distribution. The results from the LH-moment estimation of parameters show that fitting GEV distribution to annual flood samples of less than 100 values may indicate any form of extreme value distribution and not just the limited form as one would expect. Also, there was great uncertainty noticed in the estimated parameters obtained for 50 series generated from the some distribution. Fitting GEV distribution to annual flood series, obtained from daily flow series generated by 4 stochastic model available in literature calibrated for the data from Paraná and dos Patos rivers, indicated Gumbel distribution. A daily flow generator is proposed which simulated the high flow pulses by limited distribution. It successfully reproduced the statistics related to daily, monthly and annual values as well as the extreme values of historic data. Further, annual flood series of long duration are shown to follow the form of asymptotic limited GEV distribution.Biblioteca Digitais de Teses e Dissertações da USPChaudhry, Fazal HussainQueiroz, Manoel Moisés Ferreira de2002-07-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/18/18138/tde-29032016-112620/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2017-09-04T21:06:17Zoai:teses.usp.br:tde-29032016-112620Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212017-09-04T21:06:17Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Análise de cheias anuais segundo distribuição generalizada
Analysis of annual floods by generalized distribution
title Análise de cheias anuais segundo distribuição generalizada
spellingShingle Análise de cheias anuais segundo distribuição generalizada
Queiroz, Manoel Moisés Ferreira de
Daily flow models
Distribuição limitada
Estatística de extremos
Estimabilidade da distribuição GEV
Identifiability of GEV distribution
LH-moments
Limited distribution
Modelos de vazões diárias
Momentos LH
Simulação estocástica
Statistics of extremes
Stochastic simulation
title_short Análise de cheias anuais segundo distribuição generalizada
title_full Análise de cheias anuais segundo distribuição generalizada
title_fullStr Análise de cheias anuais segundo distribuição generalizada
title_full_unstemmed Análise de cheias anuais segundo distribuição generalizada
title_sort Análise de cheias anuais segundo distribuição generalizada
author Queiroz, Manoel Moisés Ferreira de
author_facet Queiroz, Manoel Moisés Ferreira de
author_role author
dc.contributor.none.fl_str_mv Chaudhry, Fazal Hussain
dc.contributor.author.fl_str_mv Queiroz, Manoel Moisés Ferreira de
dc.subject.por.fl_str_mv Daily flow models
Distribuição limitada
Estatística de extremos
Estimabilidade da distribuição GEV
Identifiability of GEV distribution
LH-moments
Limited distribution
Modelos de vazões diárias
Momentos LH
Simulação estocástica
Statistics of extremes
Stochastic simulation
topic Daily flow models
Distribuição limitada
Estatística de extremos
Estimabilidade da distribuição GEV
Identifiability of GEV distribution
LH-moments
Limited distribution
Modelos de vazões diárias
Momentos LH
Simulação estocástica
Statistics of extremes
Stochastic simulation
description A análise de freqüência de cheias através da distribuição de probabilidade generalizada de valores extremos-GEV tem crescido nos últimos anos. A estimação de altos quantis de cheias é comumente praticada extrapolando o ajuste, representado por uma das 3 formas inversas de distribuição GEV, para períodos de retorno bem superiores ao período dos dados observados. Eventos hidrológicos ocorrem na natureza com valores finitos, tal que, seus valores máximos seguem a forma assintótica da GEV limitada. Neste trabalho estuda-se a estimabilidade da distribuição GEV através de momentos LH, usando séries de cheias anuais com diferentes características e comprimentos, obtidas de séries de vazões diária gerada de diversas formas. Primeiramente, sequências estocásticas de vazões diárias foram obtidas da distribuição limitada como subjacente da distribuição GEV limitada. Os resultados da estimação dos parâmetros via momentos-LH, mostram que o ajuste da distribuição GEV as amostras de cheias anuais com menos de 100 valores, pode indicar qualquer forma de distribuição de valores extremos e não somente a forma limitada como seria esperado. Também, houve grande incerteza na estimação dos parâmetros obtidos de 50 séries geradas de uma mesma distribuição. Ajustes da distribuição GEV às séries de vazões anuais, obtidas séries de fluxo diários gerados com 4 modelos estocásticos disponíveis na literatura e calibrados aos dados dos rio Paraná e dos Patos, resultaram na forma de Gumbel. Propõe-se um modelo de geração diária que simula picos de vazões usando a distribuição limitada. O ajuste do novo modelo às vazões diárias do rio Paraná reproduziu as estatísticas diárias, mensais, anuais, assim como os valores extremos da série histórica. Além disso, a série das cheias anuais com longa duração, foi adequadamente descrita pela forma da distribuição GEV limitada.
publishDate 2002
dc.date.none.fl_str_mv 2002-07-02
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/18/18138/tde-29032016-112620/
url http://www.teses.usp.br/teses/disponiveis/18/18138/tde-29032016-112620/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258548529004544