Synthesis and characterization of magnetic nanoparticles for biomedical applications

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Arsalani, Soudabeh
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/59/59135/tde-03012022-153229/
Resumo: Magnetic nanomaterials with specific size and shape distributions have attracted a large interest in recent years due to their promising properties for biomedical applications. This thesis presents the results of the synthesis and characterization of superparamagnetic iron oxide nanoparticles (SPIONs) for biomedical applications. The first group of SPIONs was prepared by a simple green co-precipitation method at a mild temperature and capping by natural rubber latex (NRL) extracted from Hevea brasiliensis. The results showed core size, size distribution, magnetization and blocking temperature of the magnetic nanoparticles (MNPs) could be controlled by the NRL concentration. Importantly, NRL-coated MNPs showed higher magnetization compared to the bare MNPs that can suggest NRL is an effective stabilizing agent to cover MNPs with enhancing magnetization for biomedical applications. The performance of the bare MNPs and NRL-coated MNPs were investigated by magnetic resonance imaging (MRI) system. MRI results showed R2 relaxation strongly depends on the NRL shell thickness of MNPs and it decreases by increasing the shell thickness of NRL. In addition, the relaxivity ratios (r2/r1) can be controlled by adjusting the concentration of NRL. Therefore, NRL coated MNPs can be considered as effective contrast agents for MRI applications. The second group of SPIONs with fluorescent and radioluminescent properties were synthesized by the thermal decomposition method, covered with oleic acid (OA) and modified by anthracene (AN) and polyvinyl alcohol (PVA) as fluorophore and the dispersion agent in aqueous solution, respectively. This multifunctional nanocomposite exhibited sharp blue emission bands upon exposure to UV and X-ray. Furthermore, the radioluminescence intensity of this nanocomposite showed a linear relation with the X-ray dose rate, that is highly desirable for biomedical applications. The last part of this thesis was devoted to narrow the size distribution of IONP (EMG 700, Ferrotec) coated with anionic surfactants that carried out using low gradient magnetic separation (LGMS) (<15 T/m) method, to improve their performance as magnetic particles imaging (MPI) tracers. Samples before and after LGMS with different concentrations of magnetite (Fe3O4) nanoparticles were imaged in a preclinical MPI scanner. The images of the samples after separation showed an improved MPI resolution. Furthermore, we show that the LGMS technique is capable of separating larger MNP entities from the suspension in a short period of time which allowed us to adjust the size distribution and magnetic properties of MNP via timecontrolled magnetic separation.
id USP_4572f9000c9256dc04a4bdbf515cdae2
oai_identifier_str oai:teses.usp.br:tde-03012022-153229
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Synthesis and characterization of magnetic nanoparticles for biomedical applicationsSíntese e caracterização de nanopartículas magnéticas para aplicações biomédicasFluorescenceFluorescênciaImagem por partículas magnéticasImagem por ressonância magnéticaMagnetic nanoparticlesMagnetic particle imagingMagnetic resonance imagingMagnetic separationNanopartículas magnéticasRadio-luminescênciaRadioluminescenceSeparação magnéticaMagnetic nanomaterials with specific size and shape distributions have attracted a large interest in recent years due to their promising properties for biomedical applications. This thesis presents the results of the synthesis and characterization of superparamagnetic iron oxide nanoparticles (SPIONs) for biomedical applications. The first group of SPIONs was prepared by a simple green co-precipitation method at a mild temperature and capping by natural rubber latex (NRL) extracted from Hevea brasiliensis. The results showed core size, size distribution, magnetization and blocking temperature of the magnetic nanoparticles (MNPs) could be controlled by the NRL concentration. Importantly, NRL-coated MNPs showed higher magnetization compared to the bare MNPs that can suggest NRL is an effective stabilizing agent to cover MNPs with enhancing magnetization for biomedical applications. The performance of the bare MNPs and NRL-coated MNPs were investigated by magnetic resonance imaging (MRI) system. MRI results showed R2 relaxation strongly depends on the NRL shell thickness of MNPs and it decreases by increasing the shell thickness of NRL. In addition, the relaxivity ratios (r2/r1) can be controlled by adjusting the concentration of NRL. Therefore, NRL coated MNPs can be considered as effective contrast agents for MRI applications. The second group of SPIONs with fluorescent and radioluminescent properties were synthesized by the thermal decomposition method, covered with oleic acid (OA) and modified by anthracene (AN) and polyvinyl alcohol (PVA) as fluorophore and the dispersion agent in aqueous solution, respectively. This multifunctional nanocomposite exhibited sharp blue emission bands upon exposure to UV and X-ray. Furthermore, the radioluminescence intensity of this nanocomposite showed a linear relation with the X-ray dose rate, that is highly desirable for biomedical applications. The last part of this thesis was devoted to narrow the size distribution of IONP (EMG 700, Ferrotec) coated with anionic surfactants that carried out using low gradient magnetic separation (LGMS) (<15 T/m) method, to improve their performance as magnetic particles imaging (MPI) tracers. Samples before and after LGMS with different concentrations of magnetite (Fe3O4) nanoparticles were imaged in a preclinical MPI scanner. The images of the samples after separation showed an improved MPI resolution. Furthermore, we show that the LGMS technique is capable of separating larger MNP entities from the suspension in a short period of time which allowed us to adjust the size distribution and magnetic properties of MNP via timecontrolled magnetic separation.Nanomateriais magnéticos com distribuições específicas de tamanho e forma têm despertado grande interesse nos últimos anos devido às suas propriedades promissoras para aplicações biomédicas. Esta tese apresenta os resultados da síntese e caracterização de nanopartículas superparamagnéticas de óxido de ferro (SPIONs) para aplicações biomédicas. O primeiro grupo de SPIONs foi preparado por um método simples de co-precipitação verde a uma temperatura amena e tampado por látex de borracha natural (NRL) extraído de hevea brasiliensis. Os resultados mostraram que o tamanho do núcleo, a distribuição do tamanho, a magnetização e a temperatura de bloqueio das nanopartículas magnéticas (MNPs) podem ser controlados pela concentração de NRL. É importante ressaltar que os MNPs revestidos com NRL mostraram maior magnetização em comparação com os MNPs nus que podem sugerir que o NRL é um agente estabilizador eficaz para cobrir MNPs com magnetização aprimorada para aplicações biomédicas. O desempenho dos MNPs nus e dos MNPs revestidos por NRL foi investigado pelo sistema de ressonância magnética (MRI). Os resultados da ressonância magnética mostraram que o relaxamento do R2 depende fortemente da espessura da casca do MNR e diminui aumentando a espessura da casca do MNL. Além disso, as razões de relaxividade (r2 / r1) podem ser controladas ajustando a concentração de NRL. Portanto, MNPs revestidos com NRL podem ser considerados como agentes de contraste eficazes para aplicações de ressonância magnética. O segundo grupo de SPIONs com propriedades fluorescentes e radioluminescentes foi sintetizado pelo método de decomposição térmica, coberto com ácido oleico (OA) e modificado por antraceno (AN) e álcool polivinílico (PVA) como fluoróforo e agente de dispersão em solução aquosa, respectivamente. Este nanocompósito multifuncional exibia fortes bandas de emissão azul após exposição a raios UV e raios-X. Além disso, a intensidade de radioluminescência desse nanocompósito mostrou uma relação linear com a taxa de dose de raios-X, o que é altamente desejável para aplicações biomédicas. A última parte desta tese foi dedicada a restringir a distribuição de tamanhos de IONP (EMG 700, Ferrotec) revestida com surfactantes aniônicos que foram realizados usando o método de separação magnética de baixo gradiente (LGMS) (<15 T / m), para melhorar seu desempenho como rastreadores de imagem por partículas magnéticas (MPI). Amostras antes e depois do LGMS com diferentes concentrações de nanopartículas de magnetita (Fe3O4) foram fotografadas em um scanner MPI pré-clínico. As imagens das amostras após a separação mostraram uma melhor resolução MPI. Além disso, mostramos que a técnica LGMS é capaz de separar entidades maiores de MNP da suspensão em um curto período de tempo, o que nos permitiu ajustar a distribuição de tamanho e as propriedades magnéticas do MNP por meio de separação magnética controlada por tempo.Biblioteca Digitais de Teses e Dissertações da USPBaffa Filho, OswaldoArsalani, Soudabeh2020-08-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/59/59135/tde-03012022-153229/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2022-01-06T19:48:02Zoai:teses.usp.br:tde-03012022-153229Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-01-06T19:48:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Synthesis and characterization of magnetic nanoparticles for biomedical applications
Síntese e caracterização de nanopartículas magnéticas para aplicações biomédicas
title Synthesis and characterization of magnetic nanoparticles for biomedical applications
spellingShingle Synthesis and characterization of magnetic nanoparticles for biomedical applications
Arsalani, Soudabeh
Fluorescence
Fluorescência
Imagem por partículas magnéticas
Imagem por ressonância magnética
Magnetic nanoparticles
Magnetic particle imaging
Magnetic resonance imaging
Magnetic separation
Nanopartículas magnéticas
Radio-luminescência
Radioluminescence
Separação magnética
title_short Synthesis and characterization of magnetic nanoparticles for biomedical applications
title_full Synthesis and characterization of magnetic nanoparticles for biomedical applications
title_fullStr Synthesis and characterization of magnetic nanoparticles for biomedical applications
title_full_unstemmed Synthesis and characterization of magnetic nanoparticles for biomedical applications
title_sort Synthesis and characterization of magnetic nanoparticles for biomedical applications
author Arsalani, Soudabeh
author_facet Arsalani, Soudabeh
author_role author
dc.contributor.none.fl_str_mv Baffa Filho, Oswaldo
dc.contributor.author.fl_str_mv Arsalani, Soudabeh
dc.subject.por.fl_str_mv Fluorescence
Fluorescência
Imagem por partículas magnéticas
Imagem por ressonância magnética
Magnetic nanoparticles
Magnetic particle imaging
Magnetic resonance imaging
Magnetic separation
Nanopartículas magnéticas
Radio-luminescência
Radioluminescence
Separação magnética
topic Fluorescence
Fluorescência
Imagem por partículas magnéticas
Imagem por ressonância magnética
Magnetic nanoparticles
Magnetic particle imaging
Magnetic resonance imaging
Magnetic separation
Nanopartículas magnéticas
Radio-luminescência
Radioluminescence
Separação magnética
description Magnetic nanomaterials with specific size and shape distributions have attracted a large interest in recent years due to their promising properties for biomedical applications. This thesis presents the results of the synthesis and characterization of superparamagnetic iron oxide nanoparticles (SPIONs) for biomedical applications. The first group of SPIONs was prepared by a simple green co-precipitation method at a mild temperature and capping by natural rubber latex (NRL) extracted from Hevea brasiliensis. The results showed core size, size distribution, magnetization and blocking temperature of the magnetic nanoparticles (MNPs) could be controlled by the NRL concentration. Importantly, NRL-coated MNPs showed higher magnetization compared to the bare MNPs that can suggest NRL is an effective stabilizing agent to cover MNPs with enhancing magnetization for biomedical applications. The performance of the bare MNPs and NRL-coated MNPs were investigated by magnetic resonance imaging (MRI) system. MRI results showed R2 relaxation strongly depends on the NRL shell thickness of MNPs and it decreases by increasing the shell thickness of NRL. In addition, the relaxivity ratios (r2/r1) can be controlled by adjusting the concentration of NRL. Therefore, NRL coated MNPs can be considered as effective contrast agents for MRI applications. The second group of SPIONs with fluorescent and radioluminescent properties were synthesized by the thermal decomposition method, covered with oleic acid (OA) and modified by anthracene (AN) and polyvinyl alcohol (PVA) as fluorophore and the dispersion agent in aqueous solution, respectively. This multifunctional nanocomposite exhibited sharp blue emission bands upon exposure to UV and X-ray. Furthermore, the radioluminescence intensity of this nanocomposite showed a linear relation with the X-ray dose rate, that is highly desirable for biomedical applications. The last part of this thesis was devoted to narrow the size distribution of IONP (EMG 700, Ferrotec) coated with anionic surfactants that carried out using low gradient magnetic separation (LGMS) (<15 T/m) method, to improve their performance as magnetic particles imaging (MPI) tracers. Samples before and after LGMS with different concentrations of magnetite (Fe3O4) nanoparticles were imaged in a preclinical MPI scanner. The images of the samples after separation showed an improved MPI resolution. Furthermore, we show that the LGMS technique is capable of separating larger MNP entities from the suspension in a short period of time which allowed us to adjust the size distribution and magnetic properties of MNP via timecontrolled magnetic separation.
publishDate 2020
dc.date.none.fl_str_mv 2020-08-27
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/59/59135/tde-03012022-153229/
url https://www.teses.usp.br/teses/disponiveis/59/59135/tde-03012022-153229/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257825062944768