Simulation of biochemical systems using constraint-based methods and complex networks

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Burke, Paulo Eduardo Pinto
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/95/95131/tde-23032021-143111/
Resumo: Computational models of biomolecular systems have been employed to advance knowledge in many research areas. They have particular impact in modern areas such as Synthetic Biology, Bioengineering, and Precision Medicine. Current technologies can determine with high precision and throughput the molecules that compose cells and, to a great extent, the interactions between them. These interactions are usually grouped into cellular processes by their function and many are the available models that can represent and simulate them to a certain level of accuracy. Despite being commonly represented as separated systems, they are in fact interconnected. The simple fact that they may share common molecules makes their dynamics dependent on each other. Given the current high availability of data and computational power, models to represent whole-cells are being considered. However, current approaches to model and simulate cellular processes are challenging to be integrated given the high heterogeneity of methods employed. Thus, a more homogeneous approach to represent and simulate could make easier this integration. In this work, we propose a framework to model cellular processes by means of their underlying biochemical reactions as well as a simulation method that sources from this kind of representation. To investigate the capabilities of the modeling framework, we used the organism Mycoplasma genitalium as a case study aiming at representing all the molecules and interactions known to compose this organism by means of a single biochemical network. Among the results obtained from this model, we have that the obtained topology presents a good agreement with the literature, as well as good accuracy on the prediction of essential genes of the organism by employing cascade failure analysis. Additionally, we investigated the characteristics and capabilities of the so proposed simulation algorithm, called CBSA. It is shown to be able to perform efficiently discrete-stochastic evaluations of the dynamics of large sets of interactions. It is also able to be computed in parallel computing architectures such as GP-GPUs. We illustrate this by simulating several theoretical models as well as a challenging real biochemical system. Despite the advances reported in this work, much remains to be done in order to perform simulations at a whole-cell scale by using the proposed methods. Nevertheless, we point out possible future developments aiming at the ultimate goal of performing simulations of whole-cells.
id USP_459ffeeb2771420ebfdc6b8a8fb4dad1
oai_identifier_str oai:teses.usp.br:tde-23032021-143111
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Simulation of biochemical systems using constraint-based methods and complex networksSimulação de sistemas bioquímicos utilizando métodos baseados em restrições e redes complexasBiochemical networksIntegração de processosModelos de célula completaProcess integrationRedes bioquímicasSimulação estocásticaStochastic simulationWhole-cell modelsComputational models of biomolecular systems have been employed to advance knowledge in many research areas. They have particular impact in modern areas such as Synthetic Biology, Bioengineering, and Precision Medicine. Current technologies can determine with high precision and throughput the molecules that compose cells and, to a great extent, the interactions between them. These interactions are usually grouped into cellular processes by their function and many are the available models that can represent and simulate them to a certain level of accuracy. Despite being commonly represented as separated systems, they are in fact interconnected. The simple fact that they may share common molecules makes their dynamics dependent on each other. Given the current high availability of data and computational power, models to represent whole-cells are being considered. However, current approaches to model and simulate cellular processes are challenging to be integrated given the high heterogeneity of methods employed. Thus, a more homogeneous approach to represent and simulate could make easier this integration. In this work, we propose a framework to model cellular processes by means of their underlying biochemical reactions as well as a simulation method that sources from this kind of representation. To investigate the capabilities of the modeling framework, we used the organism Mycoplasma genitalium as a case study aiming at representing all the molecules and interactions known to compose this organism by means of a single biochemical network. Among the results obtained from this model, we have that the obtained topology presents a good agreement with the literature, as well as good accuracy on the prediction of essential genes of the organism by employing cascade failure analysis. Additionally, we investigated the characteristics and capabilities of the so proposed simulation algorithm, called CBSA. It is shown to be able to perform efficiently discrete-stochastic evaluations of the dynamics of large sets of interactions. It is also able to be computed in parallel computing architectures such as GP-GPUs. We illustrate this by simulating several theoretical models as well as a challenging real biochemical system. Despite the advances reported in this work, much remains to be done in order to perform simulations at a whole-cell scale by using the proposed methods. Nevertheless, we point out possible future developments aiming at the ultimate goal of performing simulations of whole-cells.Modelos computacionais de sistemas biomoleculares têm sido utilizados para avançar o conhecimento em muitas áreas do conhecimento. Eles têm um impacto particular em áreas modernas como a Biologia Sintética, Bioengenharia e Medicina de Precisão. As tecnologias atuais podem determinar com alta precisão e eficiência as moléculas que compõem células e, em grande parte, as interações entre elas. Essas interações são geralmente agrupadas em processos celulares por suas funções e muitos modelos que podem representá-los e simulá-los com um certo nível de precisão estão disponíveis na literatura. Apesar de serem comumente representados como sistemas separados, eles estão na verdade interconectados. O simples fato de que eles podem compartilhar espécies moleculares torna suas dinâmicas dependentes umas das outras. Dada a alta disponibilidade atual de dados e poder computacional, modelos para representar células completas estão sendo construídos. No entanto, a integração das abordagens atuais para modelar e simular processos celulares é dificultada devido à alta heterogeneidade dos métodos empregados. Assim, uma abordagem mais homogênea para representar e simular processos celulares poderia facilitar essa integração. Neste trabalho, propomos um framework para modelar processos celulares por meio de suas reações bioquímicas subjacentes, bem como um método de simulação que utiliza esse tipo de representação como base. Para investigar as capacidades do framework de modelagem, utilizamos o organismo \\textit{Mycoplasma genitalium} como estudo de caso com o objetivo de representar todas as moléculas e interações conhecidas que compoem este organismo por meio de uma única rede bioquímica. Entre os resultados obtidos com este modelo estão as semelhanças encontradas entre sua topologia e as descritas na literatura, bem como a predição de genes essenciais do organismo por meio de uma análise de falha em cascata. Adicionalmente, investigamos as características e capacidades do algoritmo de simulação proposto, denominado CBSA. Foi demonstrado que este algoritmo é capaz de calcular simulações estocásticas discretas de grandes conjuntos de interações de forma eficiente. Ele também pode ser calculado em arquiteturas de computação paralela, como GP-GPUs. Ilustramos isso simulando vários modelos teóricos, bem como um desafiador sistema bioquímico real. Apesar dos avanços relatados neste trabalho, muito ainda precisa ser feito para realizar simulações em escala de célula completa utilizando os métodos propostos. No entanto, apontamos possíveis desenvolvimentos futuros deste trabalho visando o objetivo final de realizar simulações de células completas.Biblioteca Digitais de Teses e Dissertações da USPCosta, Luciano da FontouraBurke, Paulo Eduardo Pinto2021-03-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/95/95131/tde-23032021-143111/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-04-06T01:27:02Zoai:teses.usp.br:tde-23032021-143111Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-04-06T01:27:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Simulation of biochemical systems using constraint-based methods and complex networks
Simulação de sistemas bioquímicos utilizando métodos baseados em restrições e redes complexas
title Simulation of biochemical systems using constraint-based methods and complex networks
spellingShingle Simulation of biochemical systems using constraint-based methods and complex networks
Burke, Paulo Eduardo Pinto
Biochemical networks
Integração de processos
Modelos de célula completa
Process integration
Redes bioquímicas
Simulação estocástica
Stochastic simulation
Whole-cell models
title_short Simulation of biochemical systems using constraint-based methods and complex networks
title_full Simulation of biochemical systems using constraint-based methods and complex networks
title_fullStr Simulation of biochemical systems using constraint-based methods and complex networks
title_full_unstemmed Simulation of biochemical systems using constraint-based methods and complex networks
title_sort Simulation of biochemical systems using constraint-based methods and complex networks
author Burke, Paulo Eduardo Pinto
author_facet Burke, Paulo Eduardo Pinto
author_role author
dc.contributor.none.fl_str_mv Costa, Luciano da Fontoura
dc.contributor.author.fl_str_mv Burke, Paulo Eduardo Pinto
dc.subject.por.fl_str_mv Biochemical networks
Integração de processos
Modelos de célula completa
Process integration
Redes bioquímicas
Simulação estocástica
Stochastic simulation
Whole-cell models
topic Biochemical networks
Integração de processos
Modelos de célula completa
Process integration
Redes bioquímicas
Simulação estocástica
Stochastic simulation
Whole-cell models
description Computational models of biomolecular systems have been employed to advance knowledge in many research areas. They have particular impact in modern areas such as Synthetic Biology, Bioengineering, and Precision Medicine. Current technologies can determine with high precision and throughput the molecules that compose cells and, to a great extent, the interactions between them. These interactions are usually grouped into cellular processes by their function and many are the available models that can represent and simulate them to a certain level of accuracy. Despite being commonly represented as separated systems, they are in fact interconnected. The simple fact that they may share common molecules makes their dynamics dependent on each other. Given the current high availability of data and computational power, models to represent whole-cells are being considered. However, current approaches to model and simulate cellular processes are challenging to be integrated given the high heterogeneity of methods employed. Thus, a more homogeneous approach to represent and simulate could make easier this integration. In this work, we propose a framework to model cellular processes by means of their underlying biochemical reactions as well as a simulation method that sources from this kind of representation. To investigate the capabilities of the modeling framework, we used the organism Mycoplasma genitalium as a case study aiming at representing all the molecules and interactions known to compose this organism by means of a single biochemical network. Among the results obtained from this model, we have that the obtained topology presents a good agreement with the literature, as well as good accuracy on the prediction of essential genes of the organism by employing cascade failure analysis. Additionally, we investigated the characteristics and capabilities of the so proposed simulation algorithm, called CBSA. It is shown to be able to perform efficiently discrete-stochastic evaluations of the dynamics of large sets of interactions. It is also able to be computed in parallel computing architectures such as GP-GPUs. We illustrate this by simulating several theoretical models as well as a challenging real biochemical system. Despite the advances reported in this work, much remains to be done in order to perform simulations at a whole-cell scale by using the proposed methods. Nevertheless, we point out possible future developments aiming at the ultimate goal of performing simulations of whole-cells.
publishDate 2021
dc.date.none.fl_str_mv 2021-03-19
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/95/95131/tde-23032021-143111/
url https://www.teses.usp.br/teses/disponiveis/95/95131/tde-23032021-143111/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258409352560640