Complexidade em programação não linear
| Ano de defesa: | 2017 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.teses.usp.br/teses/disponiveis/45/45134/tde-06012018-181441/ |
Resumo: | No presente trabalho, estudamos e desenvolvemos algoritmos com análise de complexidade de avaliação de pior caso para problemas de programação não linear. Para minimização irrestrita, estabelecemos dois algoritmos semelhantes que exploram modelos de ordem superior com estratégia de regularização. Propusemos uma implementação computacional que preserva as boas propriedades teóricas de complexidade, e fizemos experimentos numéricas com problemas clássicos da literatura, a fim de atestar a implementação e avaliar a aplicabilidade de métodos que empreguem modelos de ordem superior. Para minimização com restrições, estabelecemos um algoritmo de duas fases que converge a pontos que satisfazem condições de otimalidade de primeira ordem não escaladas para o problema de programação não linear. |
| id |
USP_4734b76cdc0ac9fe9aa05dc2b7fdcb8a |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-06012018-181441 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Complexidade em programação não linearComplexity in nonlinear programminComplexidade de avaliaçãoEvaluation complexityExperimentos numéricosNonlinear programmingNumerical experimentsOptimizationOtimizaçãoProgramação não linearNo presente trabalho, estudamos e desenvolvemos algoritmos com análise de complexidade de avaliação de pior caso para problemas de programação não linear. Para minimização irrestrita, estabelecemos dois algoritmos semelhantes que exploram modelos de ordem superior com estratégia de regularização. Propusemos uma implementação computacional que preserva as boas propriedades teóricas de complexidade, e fizemos experimentos numéricas com problemas clássicos da literatura, a fim de atestar a implementação e avaliar a aplicabilidade de métodos que empreguem modelos de ordem superior. Para minimização com restrições, estabelecemos um algoritmo de duas fases que converge a pontos que satisfazem condições de otimalidade de primeira ordem não escaladas para o problema de programação não linear.In the present work, we have studied and developed algorithms with worst-case evaluation complexity analysis for nonlinear programming problems. For the unconstrained optimization case, we have established two similar algorithms that explore high-order regularization models. We have proposed a computational implementation that preserves the good properties of the evaluation complexity theory, and we made numerical experiments with classical problems from the literature, in order to check the implementation and certify the practical applicability of methods that employ high-order models. For the constrained optimization case, we have established a two phases algorithm that converges to points that meet the unscaled first-order optimality condition for the nonlinear programming problem.Biblioteca Digitais de Teses e Dissertações da USPBirgin, Ernesto Julian GoldbergGardenghi, John Lenon Cardoso2017-08-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45134/tde-06012018-181441/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-07-19T20:50:39Zoai:teses.usp.br:tde-06012018-181441Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-19T20:50:39Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Complexidade em programação não linear Complexity in nonlinear programmin |
| title |
Complexidade em programação não linear |
| spellingShingle |
Complexidade em programação não linear Gardenghi, John Lenon Cardoso Complexidade de avaliação Evaluation complexity Experimentos numéricos Nonlinear programming Numerical experiments Optimization Otimização Programação não linear |
| title_short |
Complexidade em programação não linear |
| title_full |
Complexidade em programação não linear |
| title_fullStr |
Complexidade em programação não linear |
| title_full_unstemmed |
Complexidade em programação não linear |
| title_sort |
Complexidade em programação não linear |
| author |
Gardenghi, John Lenon Cardoso |
| author_facet |
Gardenghi, John Lenon Cardoso |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Birgin, Ernesto Julian Goldberg |
| dc.contributor.author.fl_str_mv |
Gardenghi, John Lenon Cardoso |
| dc.subject.por.fl_str_mv |
Complexidade de avaliação Evaluation complexity Experimentos numéricos Nonlinear programming Numerical experiments Optimization Otimização Programação não linear |
| topic |
Complexidade de avaliação Evaluation complexity Experimentos numéricos Nonlinear programming Numerical experiments Optimization Otimização Programação não linear |
| description |
No presente trabalho, estudamos e desenvolvemos algoritmos com análise de complexidade de avaliação de pior caso para problemas de programação não linear. Para minimização irrestrita, estabelecemos dois algoritmos semelhantes que exploram modelos de ordem superior com estratégia de regularização. Propusemos uma implementação computacional que preserva as boas propriedades teóricas de complexidade, e fizemos experimentos numéricas com problemas clássicos da literatura, a fim de atestar a implementação e avaliar a aplicabilidade de métodos que empreguem modelos de ordem superior. Para minimização com restrições, estabelecemos um algoritmo de duas fases que converge a pontos que satisfazem condições de otimalidade de primeira ordem não escaladas para o problema de programação não linear. |
| publishDate |
2017 |
| dc.date.none.fl_str_mv |
2017-08-09 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/45/45134/tde-06012018-181441/ |
| url |
http://www.teses.usp.br/teses/disponiveis/45/45134/tde-06012018-181441/ |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1815257934500724736 |