An exploration of recommender systems explanation paradigms: generating and evaluating syntactic, semantic, and generative models with knowledge graphs
| Ano de defesa: | 2024 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/55/55134/tde-20032025-103852/ |
Resumo: | Explainable recommender systems provide users with reasons to interact with items, enhancing transparency, persuasiveness, trust, efficiency, and satisfaction, thereby improving the overall user experience with the system. To generate such explanations with Knowledge Graphs (KG), algorithms choose between a set of explanation paths, which connect users interacted item nodes with a recommended item node, based on shared attributes. Three main paradigms are used to generate these paths: syntactic, semantic, and generative. Syntactic approaches select paths based on the number of links between item nodes; semantic approaches embed KG structures into a latent space; and generative models leverage language models to understand and generate explanations. However, the evaluation of explanations is often overlooked, with most studies relying on online experiments and remaining unclear how offline metrics align with user perception and explanation goals. This gap creates challenges in assessing state-of-the-art explanation algorithms and, consequently, in advancing the field. In this thesis, we design and evaluate explanation algorithms across syntactic, semantic, and generative paradigms, using both online and offline metrics to assess the different explanation paradigms and find correlations between user perception and explanation path selection. Our findings highlight that syntactic, semantic, and generative models are, respectively, an evolution in offline explanation metrics and that the diversity and popularity of attributes in explanation paths impact user perception. Finally, we provide guidelines for robust offline evaluation of explanations in recommender systems. |
| id |
USP_492539038c112e44a95646028baf77c7 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-20032025-103852 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
An exploration of recommender systems explanation paradigms: generating and evaluating syntactic, semantic, and generative models with knowledge graphsUma exploração em paradigmas de explicação em sistemas de recomendação: gerando e avaliando modelos sintáticos, semânticos e generativos com grafos de conhecimentoExplainable AIGrafos de conhecimentoInteligência artificial explicávelKnowledge graphsRecommender systemsSistemas de recomendaçãoExplainable recommender systems provide users with reasons to interact with items, enhancing transparency, persuasiveness, trust, efficiency, and satisfaction, thereby improving the overall user experience with the system. To generate such explanations with Knowledge Graphs (KG), algorithms choose between a set of explanation paths, which connect users interacted item nodes with a recommended item node, based on shared attributes. Three main paradigms are used to generate these paths: syntactic, semantic, and generative. Syntactic approaches select paths based on the number of links between item nodes; semantic approaches embed KG structures into a latent space; and generative models leverage language models to understand and generate explanations. However, the evaluation of explanations is often overlooked, with most studies relying on online experiments and remaining unclear how offline metrics align with user perception and explanation goals. This gap creates challenges in assessing state-of-the-art explanation algorithms and, consequently, in advancing the field. In this thesis, we design and evaluate explanation algorithms across syntactic, semantic, and generative paradigms, using both online and offline metrics to assess the different explanation paradigms and find correlations between user perception and explanation path selection. Our findings highlight that syntactic, semantic, and generative models are, respectively, an evolution in offline explanation metrics and that the diversity and popularity of attributes in explanation paths impact user perception. Finally, we provide guidelines for robust offline evaluation of explanations in recommender systems.Sistemas de recomendação explicáveis fornecem aos usuários razões para interagir com itens, melhorando a transparência, persuasão, confiança, eficiência e satisfação, e consequentemente a experiência geral do usuário com o sistema. Para gerar tais explicações com Grafos de Conhecimento (GC), algoritmos escolhem entre um conjunto de caminhos explicativos, que conectam os nós de itens com os quais o usuário interagiu a um nó de item recomendado, com base em atributos compartilhados. Três paradigmas principais são usados para gerar esses caminhos: sintático, semântico e generativo. Abordagens sintáticas selecionam caminhos com base no número de links entre os nós de itens; abordagens semânticas incorporam estruturas de GC em um espaço latente; e modelos generativos aproveitam modelos de linguagem para entender e gerar explicações. No entanto, a avaliação de explicações é negligenciada, com a maioria dos estudos realizando experimentos online e dificultando o entendimento de como as métricas offline se alinham com a percepção do usuário. Essa lacuna cria desafios na avaliação de algoritmos explicativos e também no avanço do campo de pesquisa. Nesta tese, projetamos e avaliamos algoritmos explicativos nos paradigmas sintático, semântico e generativo, utilizando métricas online e offline para avaliar os diferentes paradigmas de explicação e encontrar correlações entre a percepção do usuário e a seleção dos caminhos explicativos. Nossas descobertas destacam que os modelos sintático, semântico e generativo representam, respectivamente, uma evolução nas métricas offline de explicações e que a diversidade e popularidade de atributos nos caminhos explicativos impactam a percepção do usuário. Por fim, fornecemos diretrizes para uma avaliação robusta offline das explicações em sistemas de recomendação.Biblioteca Digitais de Teses e Dissertações da USPManzato, Marcelo GarciaRocha, Leonardo Chaves Dutra daZanon, Andre Levi2024-12-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-20032025-103852/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-03-20T13:45:02Zoai:teses.usp.br:tde-20032025-103852Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-03-20T13:45:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
An exploration of recommender systems explanation paradigms: generating and evaluating syntactic, semantic, and generative models with knowledge graphs Uma exploração em paradigmas de explicação em sistemas de recomendação: gerando e avaliando modelos sintáticos, semânticos e generativos com grafos de conhecimento |
| title |
An exploration of recommender systems explanation paradigms: generating and evaluating syntactic, semantic, and generative models with knowledge graphs |
| spellingShingle |
An exploration of recommender systems explanation paradigms: generating and evaluating syntactic, semantic, and generative models with knowledge graphs Zanon, Andre Levi Explainable AI Grafos de conhecimento Inteligência artificial explicável Knowledge graphs Recommender systems Sistemas de recomendação |
| title_short |
An exploration of recommender systems explanation paradigms: generating and evaluating syntactic, semantic, and generative models with knowledge graphs |
| title_full |
An exploration of recommender systems explanation paradigms: generating and evaluating syntactic, semantic, and generative models with knowledge graphs |
| title_fullStr |
An exploration of recommender systems explanation paradigms: generating and evaluating syntactic, semantic, and generative models with knowledge graphs |
| title_full_unstemmed |
An exploration of recommender systems explanation paradigms: generating and evaluating syntactic, semantic, and generative models with knowledge graphs |
| title_sort |
An exploration of recommender systems explanation paradigms: generating and evaluating syntactic, semantic, and generative models with knowledge graphs |
| author |
Zanon, Andre Levi |
| author_facet |
Zanon, Andre Levi |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Manzato, Marcelo Garcia Rocha, Leonardo Chaves Dutra da |
| dc.contributor.author.fl_str_mv |
Zanon, Andre Levi |
| dc.subject.por.fl_str_mv |
Explainable AI Grafos de conhecimento Inteligência artificial explicável Knowledge graphs Recommender systems Sistemas de recomendação |
| topic |
Explainable AI Grafos de conhecimento Inteligência artificial explicável Knowledge graphs Recommender systems Sistemas de recomendação |
| description |
Explainable recommender systems provide users with reasons to interact with items, enhancing transparency, persuasiveness, trust, efficiency, and satisfaction, thereby improving the overall user experience with the system. To generate such explanations with Knowledge Graphs (KG), algorithms choose between a set of explanation paths, which connect users interacted item nodes with a recommended item node, based on shared attributes. Three main paradigms are used to generate these paths: syntactic, semantic, and generative. Syntactic approaches select paths based on the number of links between item nodes; semantic approaches embed KG structures into a latent space; and generative models leverage language models to understand and generate explanations. However, the evaluation of explanations is often overlooked, with most studies relying on online experiments and remaining unclear how offline metrics align with user perception and explanation goals. This gap creates challenges in assessing state-of-the-art explanation algorithms and, consequently, in advancing the field. In this thesis, we design and evaluate explanation algorithms across syntactic, semantic, and generative paradigms, using both online and offline metrics to assess the different explanation paradigms and find correlations between user perception and explanation path selection. Our findings highlight that syntactic, semantic, and generative models are, respectively, an evolution in offline explanation metrics and that the diversity and popularity of attributes in explanation paths impact user perception. Finally, we provide guidelines for robust offline evaluation of explanations in recommender systems. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-12-16 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-20032025-103852/ |
| url |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-20032025-103852/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1839839151704244224 |