Ambient noise and earthquake surface wave phase velocity tomography of the South American lithosphere
| Ano de defesa: | 2024 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/14/14132/tde-16122024-115104/ |
Resumo: | Rayleigh-wave phase velocities are automatically determined using earthquake records of 1,022 stations throughout South America, Antarctica and the Caribbean between 1990 and 2020 for 10,799 earthquakes resulting in 19,522 interstation measurements. Isotropic and anisotropic phase-velocity maps are presented for periods between 5 and 200 s. For depths between 0 and 300 km, the isotropic components were used to calculate a 3-D shear-wave velocity model for the continent based on a stochastic particle-swarm-optimization inversion technique. We also obtain a Moho map for South America that shows good agreement with the most recent crustal thickness map. Azimuthal anisotropy is observed in areas of previously poor coverage by SKS studies within the South American Platform, including the Amazonian Basin, Amazonian Craton, and Pantanal Basin. For periods above 60 s, we observed a NE-SW oriented fast direction of azimuthal anisotropy in the regions of the Pantanal and Chaco-Paraná sedimentary basins. This trend coincides with a low-velocity zone (-4% V_ at 100 km) observed in this and other studies interpreted as thinned lithosphere. This result suggests that mantle flow is channeled by the lithospheric topography in this area. At crustal depths, beneath the Andes, azimuthal anisotropy is oriented parallel to the strike of the orogeny, which is consistent with the observed compression of the South American Plate from the subduction of the Nazca Slab. We also observe a systematic difference between the Guyana and Brazilian Shields at lithospheric depths. Our model shows that, on average, shear-wave velocities are approximately 3% lower in the Guyana Shield than in the Brazilian Shield which may result from a lithospheric reworking in the Central Atlantic Magmatic Province. Finally, thin crust and lithosphere is observed in the Tocantins Province in Brazil in accordance with previous seismic refraction and receiver function studies that might explain the high seismicity observed in this area. Ambient noise dispersion curves were calculated similarly to the earthquake methodology. We used 138 seismic stations from 1998 to 2022 from the Brazilian Seismographic Network and additional temporary deployments to compute 1,477 ambient noise phase-velocity dispersion curves. Rayleigh-wave isotropic and anisotropic maps, between periods of 2 and 200 s, were calculated by combining dispersion curves from the earthquake dataset with ambient noise. For the isotropic phase velocities, the results show good agreement with previous tomographies in the crust. At 2 s, higher phase velocities are observed to the west of the Pantanal Basin relative to the east. This result agrees with a joint inversion of Receiver Function, surface waves and H/V data and indicates that the basin\'s basement is shallower in the west. For the azimuthal anisotropies and crustal depths (5 to 20 s), we observed a NE-SW fast axis trend to the north of the Pantanal Basin and NW-SE to the south of it, well correlated with the Paraguay fold belt strike under the basin. At the same depths, N-S fast axis anisotropies were observed mainly inside the Paraná Basin and those could be associated with the collision of the Paranapanema, Rio Apa and Amazonian Cratons during the assemblage of west Gondwana during the Neoproterozoic as mentioned by a previous study. Fast axis anisotropies parallel to the passive margin in Mantiqueira Province were observed and correlated well with a Pms splitting study in this area. This result helps confirm the interpretation that crustal and lithospheric anisotropy in the Ribeira belt is due mainly to shear deformation during the Brasiliano orogeny. |
| id |
USP_497b179c8ed77691c2dc6ca965484a2e |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-16122024-115104 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Ambient noise and earthquake surface wave phase velocity tomography of the South American lithosphereTomografia de velocidade de fase de ondas de superfície de terremoto e ruído ambiental da litosfera Sul-AmericanaAnisotropia sísmicaCrostaCrustal imagingMohoMoho depthSeismic anisotropySeismic tomographyTomografia sísmicaRayleigh-wave phase velocities are automatically determined using earthquake records of 1,022 stations throughout South America, Antarctica and the Caribbean between 1990 and 2020 for 10,799 earthquakes resulting in 19,522 interstation measurements. Isotropic and anisotropic phase-velocity maps are presented for periods between 5 and 200 s. For depths between 0 and 300 km, the isotropic components were used to calculate a 3-D shear-wave velocity model for the continent based on a stochastic particle-swarm-optimization inversion technique. We also obtain a Moho map for South America that shows good agreement with the most recent crustal thickness map. Azimuthal anisotropy is observed in areas of previously poor coverage by SKS studies within the South American Platform, including the Amazonian Basin, Amazonian Craton, and Pantanal Basin. For periods above 60 s, we observed a NE-SW oriented fast direction of azimuthal anisotropy in the regions of the Pantanal and Chaco-Paraná sedimentary basins. This trend coincides with a low-velocity zone (-4% V_ at 100 km) observed in this and other studies interpreted as thinned lithosphere. This result suggests that mantle flow is channeled by the lithospheric topography in this area. At crustal depths, beneath the Andes, azimuthal anisotropy is oriented parallel to the strike of the orogeny, which is consistent with the observed compression of the South American Plate from the subduction of the Nazca Slab. We also observe a systematic difference between the Guyana and Brazilian Shields at lithospheric depths. Our model shows that, on average, shear-wave velocities are approximately 3% lower in the Guyana Shield than in the Brazilian Shield which may result from a lithospheric reworking in the Central Atlantic Magmatic Province. Finally, thin crust and lithosphere is observed in the Tocantins Province in Brazil in accordance with previous seismic refraction and receiver function studies that might explain the high seismicity observed in this area. Ambient noise dispersion curves were calculated similarly to the earthquake methodology. We used 138 seismic stations from 1998 to 2022 from the Brazilian Seismographic Network and additional temporary deployments to compute 1,477 ambient noise phase-velocity dispersion curves. Rayleigh-wave isotropic and anisotropic maps, between periods of 2 and 200 s, were calculated by combining dispersion curves from the earthquake dataset with ambient noise. For the isotropic phase velocities, the results show good agreement with previous tomographies in the crust. At 2 s, higher phase velocities are observed to the west of the Pantanal Basin relative to the east. This result agrees with a joint inversion of Receiver Function, surface waves and H/V data and indicates that the basin\'s basement is shallower in the west. For the azimuthal anisotropies and crustal depths (5 to 20 s), we observed a NE-SW fast axis trend to the north of the Pantanal Basin and NW-SE to the south of it, well correlated with the Paraguay fold belt strike under the basin. At the same depths, N-S fast axis anisotropies were observed mainly inside the Paraná Basin and those could be associated with the collision of the Paranapanema, Rio Apa and Amazonian Cratons during the assemblage of west Gondwana during the Neoproterozoic as mentioned by a previous study. Fast axis anisotropies parallel to the passive margin in Mantiqueira Province were observed and correlated well with a Pms splitting study in this area. This result helps confirm the interpretation that crustal and lithospheric anisotropy in the Ribeira belt is due mainly to shear deformation during the Brasiliano orogeny.As velocidades de fase das ondas Rayleigh foram determinadas automaticamente utilizando registros de terremotos de 1.022 estações sismográficas em toda a América do Sul, Antártica e Caribe entre 1990 e 2020 para 10.799 terremotos, resultando em 19.522 curvas de dispersão. Mapas de velocidade de fase da componente isotrópica e anisotrópica são apresentados para períodos entre 5 e 200 s. Para profundidades entre 0 e 300 km, as componentes isotrópicas foram utilizadas para calcular um modelo 3D de velocidade da onda de cisalhamento para o continente, com base em uma técnica de inversão estocástica de otimização por enxame de partículas. Também obtivemos um mapa de espessura da Moho para a América do Sul, que mostra boa concordância com o mapa de espessura crustal mais recente para a região. Anisotropia azimutal foi observada em áreas com pouca cobertura em estudos anteriores de SKS na Plataforma Sul-Americana, incluindo a Bacia do Amazonas, Cráton Amazônico e Bacia do Pantanal. Para períodos acima de 60 s, observamos a direção rápida de anisotropia azimutal orientada NE-SO nas regiões das bacias sedimentares do Pantanal e Chaco-Paraná. Essa tendência coincide com uma zona de baixa velocidade (-4% V_ a 100 km) observada neste e em outros estudos, interpretada como uma região de afinamento da litosfera. Este resultado sugere que o fluxo do manto é direcionado pela topografia litosférica nesta área. Em profundidades crustais nos Andes, a anisotropia azimutal é orientada paralelamente ao strike da orogenia, o que é consistente com a compressão observada da Placa Sul-Americana pela subducção da Placa de Nazca. Também observamos uma diferença sistemática entre os escudos da Guiana e do Brasil em profundidades litosféricas. Nosso modelo mostra que, em média, as velocidades das ondas de cisalhamento são aproximadamente 3% mais baixas no Escudo da Guiana do que no Escudo Brasileiro, o que pode resultar de um retrabalho da litosfera cratonica na região Província Magmática do Atlântico Central. Finalmente, observou-se baixa espessura crustal e litosférica na Província Tocantins, no Brasil, de acordo com estudos anteriores de refração sísmica e função do receptor, o que pode explicar a alta sismicidade observada nesta área. Curvas de dispersão de ruído ambiental foram calculadas de forma semelhante à metodologia dos terremotos. Utilizamos 138 estações sismográficas de 1998 a 2022 da Rede Sismográfica Brasileira e instalações temporárias para calcular 1.477 curvas de dispersão de velocidade de fase da onda Rayleigh. Mapas isotrópicos e anisotrópicos de ondas Rayleigh, para períodos entre 2 e 200 s, foram calculados combinando as curvas de dispersão do conjunto de dados de terremotos com o ruído ambiental. Para as velocidades de fase isotrópicas, os resultados mostram boa concordância com tomografias anteriores na crosta. Em 2 s, anomalias altas de velocidade de fase são observadas a oeste da Bacia do Pantanal em relação ao leste. Este resultado concorda com uma inversão conjunta de Função do Receptor, ondas de superfície e dados H/V e indica que o embasamento da bacia é mais raso no Oeste. Para as anisotropias azimutais e profundidades crustais (5 a 20 segundos), observamos uma tendência NE-SO da direção rápida da anisotropia ao norte da Bacia do Pantanal e NO-SE ao sul dela, bem correlacionada com o strike do cinturão do Paraguai sob a bacia. Nas mesmas profundidades, a direção rápida N-S das anisotropias foram observadas principalmente dentro da Bacia do Paraná, o que pode estar associado à colisão dos crátons Paranapanema, Rio Apa e Amazônico durante que colidiram durante a formação do Gondwana Ocidental no Neoproterozoico, conforme mencionado por um estudo anterior. Direções rápidas de anisotropias paralelas à margem passiva na Província Mantiqueira foram observadas e bem correlacionadas com um estudo de Pms splitting nesta área. Este resultado ajuda a confirmar a interpretação de que a anisotropia crustal e litosférica na Faixa Ribeira é devido a principalmente deformações de cisalhamento devido a Orogênese Brasiliana.Biblioteca Digitais de Teses e Dissertações da USPAssumpcao, Marcelo Sousa deSouza, Lúcio Quadros de2024-11-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/14/14132/tde-16122024-115104/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-12-17T11:55:02Zoai:teses.usp.br:tde-16122024-115104Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-12-17T11:55:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Ambient noise and earthquake surface wave phase velocity tomography of the South American lithosphere Tomografia de velocidade de fase de ondas de superfície de terremoto e ruído ambiental da litosfera Sul-Americana |
| title |
Ambient noise and earthquake surface wave phase velocity tomography of the South American lithosphere |
| spellingShingle |
Ambient noise and earthquake surface wave phase velocity tomography of the South American lithosphere Souza, Lúcio Quadros de Anisotropia sísmica Crosta Crustal imaging Moho Moho depth Seismic anisotropy Seismic tomography Tomografia sísmica |
| title_short |
Ambient noise and earthquake surface wave phase velocity tomography of the South American lithosphere |
| title_full |
Ambient noise and earthquake surface wave phase velocity tomography of the South American lithosphere |
| title_fullStr |
Ambient noise and earthquake surface wave phase velocity tomography of the South American lithosphere |
| title_full_unstemmed |
Ambient noise and earthquake surface wave phase velocity tomography of the South American lithosphere |
| title_sort |
Ambient noise and earthquake surface wave phase velocity tomography of the South American lithosphere |
| author |
Souza, Lúcio Quadros de |
| author_facet |
Souza, Lúcio Quadros de |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Assumpcao, Marcelo Sousa de |
| dc.contributor.author.fl_str_mv |
Souza, Lúcio Quadros de |
| dc.subject.por.fl_str_mv |
Anisotropia sísmica Crosta Crustal imaging Moho Moho depth Seismic anisotropy Seismic tomography Tomografia sísmica |
| topic |
Anisotropia sísmica Crosta Crustal imaging Moho Moho depth Seismic anisotropy Seismic tomography Tomografia sísmica |
| description |
Rayleigh-wave phase velocities are automatically determined using earthquake records of 1,022 stations throughout South America, Antarctica and the Caribbean between 1990 and 2020 for 10,799 earthquakes resulting in 19,522 interstation measurements. Isotropic and anisotropic phase-velocity maps are presented for periods between 5 and 200 s. For depths between 0 and 300 km, the isotropic components were used to calculate a 3-D shear-wave velocity model for the continent based on a stochastic particle-swarm-optimization inversion technique. We also obtain a Moho map for South America that shows good agreement with the most recent crustal thickness map. Azimuthal anisotropy is observed in areas of previously poor coverage by SKS studies within the South American Platform, including the Amazonian Basin, Amazonian Craton, and Pantanal Basin. For periods above 60 s, we observed a NE-SW oriented fast direction of azimuthal anisotropy in the regions of the Pantanal and Chaco-Paraná sedimentary basins. This trend coincides with a low-velocity zone (-4% V_ at 100 km) observed in this and other studies interpreted as thinned lithosphere. This result suggests that mantle flow is channeled by the lithospheric topography in this area. At crustal depths, beneath the Andes, azimuthal anisotropy is oriented parallel to the strike of the orogeny, which is consistent with the observed compression of the South American Plate from the subduction of the Nazca Slab. We also observe a systematic difference between the Guyana and Brazilian Shields at lithospheric depths. Our model shows that, on average, shear-wave velocities are approximately 3% lower in the Guyana Shield than in the Brazilian Shield which may result from a lithospheric reworking in the Central Atlantic Magmatic Province. Finally, thin crust and lithosphere is observed in the Tocantins Province in Brazil in accordance with previous seismic refraction and receiver function studies that might explain the high seismicity observed in this area. Ambient noise dispersion curves were calculated similarly to the earthquake methodology. We used 138 seismic stations from 1998 to 2022 from the Brazilian Seismographic Network and additional temporary deployments to compute 1,477 ambient noise phase-velocity dispersion curves. Rayleigh-wave isotropic and anisotropic maps, between periods of 2 and 200 s, were calculated by combining dispersion curves from the earthquake dataset with ambient noise. For the isotropic phase velocities, the results show good agreement with previous tomographies in the crust. At 2 s, higher phase velocities are observed to the west of the Pantanal Basin relative to the east. This result agrees with a joint inversion of Receiver Function, surface waves and H/V data and indicates that the basin\'s basement is shallower in the west. For the azimuthal anisotropies and crustal depths (5 to 20 s), we observed a NE-SW fast axis trend to the north of the Pantanal Basin and NW-SE to the south of it, well correlated with the Paraguay fold belt strike under the basin. At the same depths, N-S fast axis anisotropies were observed mainly inside the Paraná Basin and those could be associated with the collision of the Paranapanema, Rio Apa and Amazonian Cratons during the assemblage of west Gondwana during the Neoproterozoic as mentioned by a previous study. Fast axis anisotropies parallel to the passive margin in Mantiqueira Province were observed and correlated well with a Pms splitting study in this area. This result helps confirm the interpretation that crustal and lithospheric anisotropy in the Ribeira belt is due mainly to shear deformation during the Brasiliano orogeny. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-11-08 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/14/14132/tde-16122024-115104/ |
| url |
https://www.teses.usp.br/teses/disponiveis/14/14132/tde-16122024-115104/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1831214831552692224 |