Tuning Stochastic Dynamic Models of the Dynamics of DNA Replication in Trypanosomatids

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: Scholl, Bruno Boaventura
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
DNA
Link de acesso: https://www.teses.usp.br/teses/disponiveis/95/95131/tde-29062025-202725/
Resumo: The Chagas disease and the Human African trypanosomiasis are classified as neglected tropical diseases (NTDs), which afflict 1 billion people worldwide and are more prevalent in poorer countries. These two diseases are caused by the Trypanosoma cruzi and Trypanosoma brucei, respectively, protozoan endoparasites of the Trypanosomatida family. Trypanosomatids change their form depending on their lifecycle, host, and infection phase by changing their surface proteins, called variant surface glycoproteins (VSGs). Their genes are organized in polycistronic regions, long sections of multiple genes with a single promoter, and are constantly transcribed, even during DNA replication in the S phase of the cell cycle. Interactions between replication and transcription are increased, and head-on collisions can interrupt replication and cause lesions and mutations in the DNA. These interactions and collisions could define the landscape of origin firing during the S phase, and computational model simulations can help us better understand these interactions by providing a large volume of data from large sample sizes. In this work, we present the tuning of the ReDyMo, a model of the DNA replication and interactions between replication and transcription, for two specific organisms, Trypanosoma brucei and Trypanosoma cruzi, so that they are predictive of the time of replication of the bases of the genome. For the Trypanosoma cruzi models, we tuned two models: one using MFA-Seq to derive the probabilities of activation of origins in the genome and one using ChIP-Seq data with the specific locations of constitutive origins. The models were tuned for more than 1000 trials each and achieved SMAPE errors of 7.93% for Trypanosoma brucei, 5.55% for the Trypanosoma cruzi with MFA-Seq, and 8.39% for the Trypanosoma cruzi with ChIP-Seq. Analyzing the tuning of these models, we concluded that although they are predictive in some sections of the genome, in other parts, they diverge from the expected replication time. Tuning them with more trials and different tuning settings could yield more accurate models of the DNA replication in Trypanosomatids. We conducted a preliminary analysis of the model&#8217s output characteristics and found no patterns of head-on collisions in the edges of polycistronic regions, where sections with no transcription meet sections with active transcription. Moreover, we identified a pattern of increased head-on collisions in sections of the genome that replicate early in the S phase. This pattern is present in the Trypanosoma brucei and the Trypanosoma cruzi models with MFA-Seq. The models provide some level of accuracy and can be improved through the tools and tuning framework developed in this work. These models can help researchers better understand the dynamics of DNA replication in trypanosomatids and investigate the possible links between these replication-transcription interactions and mutations and the parasites&#8217 ability to escape the hosts immune system.
id USP_4bff85e5caf7354a96e4336d6cfc68cc
oai_identifier_str oai:teses.usp.br:tde-29062025-202725
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Tuning Stochastic Dynamic Models of the Dynamics of DNA Replication in TrypanosomatidsTreinamento de Modelos Dinâmicos Estocásticos da Dinâmica da Replicação de DNA em TripanossomatídeosComputational ModelDNADNAModelo ComputacionalReplicaçãoReplicationTranscriçãoTranscriptionTripanossomaTrypanosomaThe Chagas disease and the Human African trypanosomiasis are classified as neglected tropical diseases (NTDs), which afflict 1 billion people worldwide and are more prevalent in poorer countries. These two diseases are caused by the Trypanosoma cruzi and Trypanosoma brucei, respectively, protozoan endoparasites of the Trypanosomatida family. Trypanosomatids change their form depending on their lifecycle, host, and infection phase by changing their surface proteins, called variant surface glycoproteins (VSGs). Their genes are organized in polycistronic regions, long sections of multiple genes with a single promoter, and are constantly transcribed, even during DNA replication in the S phase of the cell cycle. Interactions between replication and transcription are increased, and head-on collisions can interrupt replication and cause lesions and mutations in the DNA. These interactions and collisions could define the landscape of origin firing during the S phase, and computational model simulations can help us better understand these interactions by providing a large volume of data from large sample sizes. In this work, we present the tuning of the ReDyMo, a model of the DNA replication and interactions between replication and transcription, for two specific organisms, Trypanosoma brucei and Trypanosoma cruzi, so that they are predictive of the time of replication of the bases of the genome. For the Trypanosoma cruzi models, we tuned two models: one using MFA-Seq to derive the probabilities of activation of origins in the genome and one using ChIP-Seq data with the specific locations of constitutive origins. The models were tuned for more than 1000 trials each and achieved SMAPE errors of 7.93% for Trypanosoma brucei, 5.55% for the Trypanosoma cruzi with MFA-Seq, and 8.39% for the Trypanosoma cruzi with ChIP-Seq. Analyzing the tuning of these models, we concluded that although they are predictive in some sections of the genome, in other parts, they diverge from the expected replication time. Tuning them with more trials and different tuning settings could yield more accurate models of the DNA replication in Trypanosomatids. We conducted a preliminary analysis of the model&#8217s output characteristics and found no patterns of head-on collisions in the edges of polycistronic regions, where sections with no transcription meet sections with active transcription. Moreover, we identified a pattern of increased head-on collisions in sections of the genome that replicate early in the S phase. This pattern is present in the Trypanosoma brucei and the Trypanosoma cruzi models with MFA-Seq. The models provide some level of accuracy and can be improved through the tools and tuning framework developed in this work. These models can help researchers better understand the dynamics of DNA replication in trypanosomatids and investigate the possible links between these replication-transcription interactions and mutations and the parasites&#8217 ability to escape the hosts immune system.A Doença de Chagas e a Tripanossomíase Africana Humana são classificadas como Doenças Tropicais Negligenciadas (NTDs), que afligem 1 bilhão de pessoas mundialmente e são mais prevalentes em países mais pobres. Essas duas doenças são causadas pelo Trypanosoma cruzi e Trypanosoma brucei, respectivamente, que são protozoários endoparasitas da família Trypanosomatida. Tripanossomatídeos mudam sua forma dependendo do seu ciclo de vida, hospedeiro e fase da infecção através da mudança de suas proteínas superficiais, chamadas Glicoproteínas Variantes de Superfície (VSGs). Seus genes estão organizados em regiões policistrônicas, seções longas com múltiplos genes e um único promotor, que são transcritas continuamente, inclusive durante a replicação do DNA na fase S do ciclo celular. Interações entre replicação e transcrição aumentam e colisões frente-a-frente podem interromper a replicação e causar lesões e mutações no DNA. Essas interações e colisões podem definir a distribuição de disparo de origens de replicação na fase S e a simulação de modelos computacionais podem nos ajudar a entendê-las melhor, provendo grandes quantidades de dados vindas de uma grande amostragem. Nesse trabalho, apresentamos o ajuste do modelo ReDyMo, um modelo da replicação do DNA e suas interações com a transcrição, para dois organismos, Trypanosoma brucei e Trypanosoma cruzi, de forma a predizer o tempo de replicação das bases do genoma. Para o Trypanosoma cruzi, dois modelos foram ajustados: um com dados de MFA-Seq para gerar as probabilidades de ativação de origens de replicação no genoma e um com dados de ChIP-Seq com a localização precisa das origens de replicação constitutivas. Os modelos foram ajustados por mais de 1000 ensaios cada e atingiram valores de erro SMAPE de 7.93% para Trypanosoma brucei, 5.55% para o Trypanosoma cruzi com MFA-Seq e 8.39% para o Trypanosoma cruzi com ChIP-Seq. Fazendo a análise do ajuste dos modelos, concluímos que, mesmo os modelos sendo preditivos em algumas partes do genoma, em outras partes eles divergem dos tempos de replicação esperados. Ajustá-los com mais ensaios e ajustes de ensaio diferentes pode resultar em modelos da replicação de DNA de tripanossomatídeos mais acurados. Conduzimos uma análise preliminar das características da saída dos modelos e não encontramos padrões de colisões frente-a-frente nos inícios e términos de regiões policistrônicas, onde seções sem transcrição encontram regiões ativamente transcritas. Além disso, identificamos um padrão de aumento de taxa de colisões em seções do genoma que têm sua replicação mais cedo na fase S. Esse padrão pode ser observado nos modelos de Trypanosoma brucei e de Trypanosoma cruzi com MFA-Seq. Os modelos provêm certo nível de acurácia e podem ser melhorados com as ferramentas e arcabouço de ajuste desenvolvidos nesse trabalho. Esses modelos podem ajudar pesquisadores a aumentar o entendimento da dinâmica de replicação de DNA em tripanossomatídeos e investigar as possíveis ligações dessas interações entre replicação e transcrição com mutações e a habilidade dos parasitas de escaparem do sistema imune do hospedeiro.Biblioteca Digitais de Teses e Dissertações da USPReis, Marcelo da SilvaScholl, Bruno Boaventura2025-04-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/95/95131/tde-29062025-202725/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-07-28T19:02:02Zoai:teses.usp.br:tde-29062025-202725Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-07-28T19:02:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Tuning Stochastic Dynamic Models of the Dynamics of DNA Replication in Trypanosomatids
Treinamento de Modelos Dinâmicos Estocásticos da Dinâmica da Replicação de DNA em Tripanossomatídeos
title Tuning Stochastic Dynamic Models of the Dynamics of DNA Replication in Trypanosomatids
spellingShingle Tuning Stochastic Dynamic Models of the Dynamics of DNA Replication in Trypanosomatids
Scholl, Bruno Boaventura
Computational Model
DNA
DNA
Modelo Computacional
Replicação
Replication
Transcrição
Transcription
Tripanossoma
Trypanosoma
title_short Tuning Stochastic Dynamic Models of the Dynamics of DNA Replication in Trypanosomatids
title_full Tuning Stochastic Dynamic Models of the Dynamics of DNA Replication in Trypanosomatids
title_fullStr Tuning Stochastic Dynamic Models of the Dynamics of DNA Replication in Trypanosomatids
title_full_unstemmed Tuning Stochastic Dynamic Models of the Dynamics of DNA Replication in Trypanosomatids
title_sort Tuning Stochastic Dynamic Models of the Dynamics of DNA Replication in Trypanosomatids
author Scholl, Bruno Boaventura
author_facet Scholl, Bruno Boaventura
author_role author
dc.contributor.none.fl_str_mv Reis, Marcelo da Silva
dc.contributor.author.fl_str_mv Scholl, Bruno Boaventura
dc.subject.por.fl_str_mv Computational Model
DNA
DNA
Modelo Computacional
Replicação
Replication
Transcrição
Transcription
Tripanossoma
Trypanosoma
topic Computational Model
DNA
DNA
Modelo Computacional
Replicação
Replication
Transcrição
Transcription
Tripanossoma
Trypanosoma
description The Chagas disease and the Human African trypanosomiasis are classified as neglected tropical diseases (NTDs), which afflict 1 billion people worldwide and are more prevalent in poorer countries. These two diseases are caused by the Trypanosoma cruzi and Trypanosoma brucei, respectively, protozoan endoparasites of the Trypanosomatida family. Trypanosomatids change their form depending on their lifecycle, host, and infection phase by changing their surface proteins, called variant surface glycoproteins (VSGs). Their genes are organized in polycistronic regions, long sections of multiple genes with a single promoter, and are constantly transcribed, even during DNA replication in the S phase of the cell cycle. Interactions between replication and transcription are increased, and head-on collisions can interrupt replication and cause lesions and mutations in the DNA. These interactions and collisions could define the landscape of origin firing during the S phase, and computational model simulations can help us better understand these interactions by providing a large volume of data from large sample sizes. In this work, we present the tuning of the ReDyMo, a model of the DNA replication and interactions between replication and transcription, for two specific organisms, Trypanosoma brucei and Trypanosoma cruzi, so that they are predictive of the time of replication of the bases of the genome. For the Trypanosoma cruzi models, we tuned two models: one using MFA-Seq to derive the probabilities of activation of origins in the genome and one using ChIP-Seq data with the specific locations of constitutive origins. The models were tuned for more than 1000 trials each and achieved SMAPE errors of 7.93% for Trypanosoma brucei, 5.55% for the Trypanosoma cruzi with MFA-Seq, and 8.39% for the Trypanosoma cruzi with ChIP-Seq. Analyzing the tuning of these models, we concluded that although they are predictive in some sections of the genome, in other parts, they diverge from the expected replication time. Tuning them with more trials and different tuning settings could yield more accurate models of the DNA replication in Trypanosomatids. We conducted a preliminary analysis of the model&#8217s output characteristics and found no patterns of head-on collisions in the edges of polycistronic regions, where sections with no transcription meet sections with active transcription. Moreover, we identified a pattern of increased head-on collisions in sections of the genome that replicate early in the S phase. This pattern is present in the Trypanosoma brucei and the Trypanosoma cruzi models with MFA-Seq. The models provide some level of accuracy and can be improved through the tools and tuning framework developed in this work. These models can help researchers better understand the dynamics of DNA replication in trypanosomatids and investigate the possible links between these replication-transcription interactions and mutations and the parasites&#8217 ability to escape the hosts immune system.
publishDate 2025
dc.date.none.fl_str_mv 2025-04-28
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/95/95131/tde-29062025-202725/
url https://www.teses.usp.br/teses/disponiveis/95/95131/tde-29062025-202725/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1844786351034073088