Programação de rotação de culturas - modelos e métodos de solução

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: Santos, Lana Mara Rodrigues dos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-09062009-110129/
Resumo: Nas últimas décadas, diversas propostas de técnicas e de processos visando aumentar a sustentabilidade da agricultura ganharam evidência. Tais propostas geram novos modelos de planejamento em que devem ser considerados aspectos técnicos e ecológicos de produção, bem como o acesso de pequenos agricultores familiares ao mercado consumidor. Neste tipo de planejamento da produção, a rotação de culturas desempenha um papel fundamental, pois contribui para a manutenção dos recursos produtivos, para a minimização do uso de recursos não-renováveis e para o controle biológico da população de herbívoros, patógenos e plantas espontâneas. Nesta tese abordamos dois problemas de Programação de Rotação de Culturas (PRC) focados na produção de base sustentável de hortaliças: o problema de PRC com restrições de Adjacências (PRC-A) e o problema de PRC com atendimento da Demanda (PRC-D). O planejamento da produção de hortaliças é complexo pois envolve, em geral, um grande número de culturas com limitações específicas quanto à época de plantio e com períodos de cultivo e produtividades muito variáveis. A programação de rotação de culturas para as áreas de plantio é formulada como um modelo de otimização 01 e, para os dois problemas, em cada programação considera se tanto aspectos técnicos (época de plantio e colheita etc.) quanto ecológicos (adubação verde, pousio etc.). No problema PRC-A o objetivo é a maximização da ocupação das áreas produtivas em que as restrições de plantio são estendidas às áreas adjacentes. Como a formulação matemática para o problema tem, em geral, um número muito grande de restrições e variáveis, com matriz de restrições esparsa e bloco-diagonal, o modelo é reformulado com a Decomposição DantzigWolfe, o que permitiu sua resolução por procedimentos baseados em geração de colunas, heurísticos e exatos. No problema PRC-D desejase suprir a demanda de um conjunto de hortaliças tendo-se disponível um conjunto de áreas heterogêneas. As culturas passíveis de plantio, bem como as suas produtividades, dependem da área considerada. O problema foi formulado como um modelo de otimização linear em que cada variável está associada a uma programação de rotação de culturas. O modelo contém potencialmente um número grande de programações de rotação e é resolvido por geração de colunas. Experimentos computacionais usando instâncias baseadas em dados reais confirmam a eficácia dos modelos e das metodologias propostos para os problemas
id USP_5667cdf2f1d74f3a41b89557d91b3638
oai_identifier_str oai:teses.usp.br:tde-09062009-110129
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Programação de rotação de culturas - modelos e métodos de soluçãoCrop rotation Scheduling - modeling and solution methodoliesBranch-and-PriceBranch-and-PriceColumn generationCrop rotationGeração de colunasInteger programmingLinear programmingProgramação inteiraProgramação linearRotação de culturasNas últimas décadas, diversas propostas de técnicas e de processos visando aumentar a sustentabilidade da agricultura ganharam evidência. Tais propostas geram novos modelos de planejamento em que devem ser considerados aspectos técnicos e ecológicos de produção, bem como o acesso de pequenos agricultores familiares ao mercado consumidor. Neste tipo de planejamento da produção, a rotação de culturas desempenha um papel fundamental, pois contribui para a manutenção dos recursos produtivos, para a minimização do uso de recursos não-renováveis e para o controle biológico da população de herbívoros, patógenos e plantas espontâneas. Nesta tese abordamos dois problemas de Programação de Rotação de Culturas (PRC) focados na produção de base sustentável de hortaliças: o problema de PRC com restrições de Adjacências (PRC-A) e o problema de PRC com atendimento da Demanda (PRC-D). O planejamento da produção de hortaliças é complexo pois envolve, em geral, um grande número de culturas com limitações específicas quanto à época de plantio e com períodos de cultivo e produtividades muito variáveis. A programação de rotação de culturas para as áreas de plantio é formulada como um modelo de otimização 01 e, para os dois problemas, em cada programação considera se tanto aspectos técnicos (época de plantio e colheita etc.) quanto ecológicos (adubação verde, pousio etc.). No problema PRC-A o objetivo é a maximização da ocupação das áreas produtivas em que as restrições de plantio são estendidas às áreas adjacentes. Como a formulação matemática para o problema tem, em geral, um número muito grande de restrições e variáveis, com matriz de restrições esparsa e bloco-diagonal, o modelo é reformulado com a Decomposição DantzigWolfe, o que permitiu sua resolução por procedimentos baseados em geração de colunas, heurísticos e exatos. No problema PRC-D desejase suprir a demanda de um conjunto de hortaliças tendo-se disponível um conjunto de áreas heterogêneas. As culturas passíveis de plantio, bem como as suas produtividades, dependem da área considerada. O problema foi formulado como um modelo de otimização linear em que cada variável está associada a uma programação de rotação de culturas. O modelo contém potencialmente um número grande de programações de rotação e é resolvido por geração de colunas. Experimentos computacionais usando instâncias baseadas em dados reais confirmam a eficácia dos modelos e das metodologias propostos para os problemasOver the last decades, various proposals for techniques and processes to increase agricultural sustainability have been put forward. These proposals bring new planning models in which technical and ecological production aspects must be considered, as well as the access of small farmers to the consumer market. In this type of agricultural production planning, crop rotation plays a fundamental role as it contributes to maintaining productive resources, to reducing the use of non-renewable resources, and to biologically controlling the population of herbivores, pathogens and spontaneous plants. In this thesis, two problems concerning the Crop Rotation Schedule (CRS) focusing on sustainable production vegetables are addressed: the problem of the CRS having Adjacent constraints (CRS-A) and the problem of the CRS under Demand constraints (CRS-D). Production planning of vegetables is complex as it generally involves a large number of crop species having specific limitations regarding the planting season and very varied production times and productivity. The crop rotation schedule problem is formulated as an optimization model 0-1, and for both problems, in each schedule technical (planting and harvesting season etc.) and ecological (green manure, fallow etc.) aspects are considered. Concerning the CRS-A problem, the aim is to maximize the occupation of cropping areas in which planting constraints are extended to adjacent areas. As the mathematical formulation for the problem generally has a large number of restrictions and variables and the structure of the constraint matrix of the problem is sparse and block-diagonal, the model has been reformulated using the Dantzig-Wolfe Decomposition strategy, which has enabled the use of a heuristic and exact procedures based on the column generation approach for its resolution. In the CRS-D problem, the aim is to meet the market demands for vegetables having a set of heterogeneous cropping areas available. The potential planting crops, as well as their productivity, depend on the considered cropping area. The problem is formulated as an optimization linear model in which each variable is associated to a crop rotation schedule. The model may include a large number of rotation schedules and is solved by the column generation approach. Computational experiments using instances based on real-world data confirm the efficiency of models and methodologies proposed for the problemsBiblioteca Digitais de Teses e Dissertações da USPArenales, Marcos NereuSantos, Lana Mara Rodrigues dos2009-04-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-09062009-110129/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:59Zoai:teses.usp.br:tde-09062009-110129Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:59Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Programação de rotação de culturas - modelos e métodos de solução
Crop rotation Scheduling - modeling and solution methodolies
title Programação de rotação de culturas - modelos e métodos de solução
spellingShingle Programação de rotação de culturas - modelos e métodos de solução
Santos, Lana Mara Rodrigues dos
Branch-and-Price
Branch-and-Price
Column generation
Crop rotation
Geração de colunas
Integer programming
Linear programming
Programação inteira
Programação linear
Rotação de culturas
title_short Programação de rotação de culturas - modelos e métodos de solução
title_full Programação de rotação de culturas - modelos e métodos de solução
title_fullStr Programação de rotação de culturas - modelos e métodos de solução
title_full_unstemmed Programação de rotação de culturas - modelos e métodos de solução
title_sort Programação de rotação de culturas - modelos e métodos de solução
author Santos, Lana Mara Rodrigues dos
author_facet Santos, Lana Mara Rodrigues dos
author_role author
dc.contributor.none.fl_str_mv Arenales, Marcos Nereu
dc.contributor.author.fl_str_mv Santos, Lana Mara Rodrigues dos
dc.subject.por.fl_str_mv Branch-and-Price
Branch-and-Price
Column generation
Crop rotation
Geração de colunas
Integer programming
Linear programming
Programação inteira
Programação linear
Rotação de culturas
topic Branch-and-Price
Branch-and-Price
Column generation
Crop rotation
Geração de colunas
Integer programming
Linear programming
Programação inteira
Programação linear
Rotação de culturas
description Nas últimas décadas, diversas propostas de técnicas e de processos visando aumentar a sustentabilidade da agricultura ganharam evidência. Tais propostas geram novos modelos de planejamento em que devem ser considerados aspectos técnicos e ecológicos de produção, bem como o acesso de pequenos agricultores familiares ao mercado consumidor. Neste tipo de planejamento da produção, a rotação de culturas desempenha um papel fundamental, pois contribui para a manutenção dos recursos produtivos, para a minimização do uso de recursos não-renováveis e para o controle biológico da população de herbívoros, patógenos e plantas espontâneas. Nesta tese abordamos dois problemas de Programação de Rotação de Culturas (PRC) focados na produção de base sustentável de hortaliças: o problema de PRC com restrições de Adjacências (PRC-A) e o problema de PRC com atendimento da Demanda (PRC-D). O planejamento da produção de hortaliças é complexo pois envolve, em geral, um grande número de culturas com limitações específicas quanto à época de plantio e com períodos de cultivo e produtividades muito variáveis. A programação de rotação de culturas para as áreas de plantio é formulada como um modelo de otimização 01 e, para os dois problemas, em cada programação considera se tanto aspectos técnicos (época de plantio e colheita etc.) quanto ecológicos (adubação verde, pousio etc.). No problema PRC-A o objetivo é a maximização da ocupação das áreas produtivas em que as restrições de plantio são estendidas às áreas adjacentes. Como a formulação matemática para o problema tem, em geral, um número muito grande de restrições e variáveis, com matriz de restrições esparsa e bloco-diagonal, o modelo é reformulado com a Decomposição DantzigWolfe, o que permitiu sua resolução por procedimentos baseados em geração de colunas, heurísticos e exatos. No problema PRC-D desejase suprir a demanda de um conjunto de hortaliças tendo-se disponível um conjunto de áreas heterogêneas. As culturas passíveis de plantio, bem como as suas produtividades, dependem da área considerada. O problema foi formulado como um modelo de otimização linear em que cada variável está associada a uma programação de rotação de culturas. O modelo contém potencialmente um número grande de programações de rotação e é resolvido por geração de colunas. Experimentos computacionais usando instâncias baseadas em dados reais confirmam a eficácia dos modelos e das metodologias propostos para os problemas
publishDate 2009
dc.date.none.fl_str_mv 2009-04-08
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55134/tde-09062009-110129/
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-09062009-110129/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258003370147840